Wencheng Xia, Zhongxin Xu, Hui Dong, Shengnan Zhang, Changdong He, Dan Li, Bo Sun, Bin Dai, Suwei Dong, Cong Liu
{"title":"糖肽原纤维的设计和结构解析:模拟糖胺聚糖的生物医学应用功能","authors":"Wencheng Xia, Zhongxin Xu, Hui Dong, Shengnan Zhang, Changdong He, Dan Li, Bo Sun, Bin Dai, Suwei Dong, Cong Liu","doi":"10.1021/jacs.5c07039","DOIUrl":null,"url":null,"abstract":"Glycosaminoglycans (GAGs) are essential polysaccharides crucial for various cellular functions, such as cell proliferation, migration, and differentiation. However, their complex structure and variability from natural sources pose challenges for functional studies and therapeutic applications. In this study, we engineered a glycopeptide that assembles into fibrils, emulating the functional attributes of GAGs. Utilizing cryo-EM, we elucidated the atomic structure of the designed glycopeptide fibril, which is composed of three identical protofilaments intertwined into a left-handed helix and held together by a variety of intermolecular interactions. Remarkably, the functional sugar units, glucuronic acids, are orderly positioned on the fibril surface, making them readily accessible to the solvent. This distinctive spatial configuration allows the designed glycopeptide fibril to effectively mimic key GAG functionalities, including the promotion of cell proliferation, cell migration, and osteogenic differentiation. Our findings offer a structural framework for designing glycan functionalities on glycopeptide fibrils and open avenues for developing glycopeptide-based materials with versatile biological activities. This work further enhances the potential of these materials for applications in therapeutic and regenerative medicine.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"1 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Structural Elucidation of Glycopeptide Fibrils: Emulating Glycosaminoglycan Functions for Biomedical Applications\",\"authors\":\"Wencheng Xia, Zhongxin Xu, Hui Dong, Shengnan Zhang, Changdong He, Dan Li, Bo Sun, Bin Dai, Suwei Dong, Cong Liu\",\"doi\":\"10.1021/jacs.5c07039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glycosaminoglycans (GAGs) are essential polysaccharides crucial for various cellular functions, such as cell proliferation, migration, and differentiation. However, their complex structure and variability from natural sources pose challenges for functional studies and therapeutic applications. In this study, we engineered a glycopeptide that assembles into fibrils, emulating the functional attributes of GAGs. Utilizing cryo-EM, we elucidated the atomic structure of the designed glycopeptide fibril, which is composed of three identical protofilaments intertwined into a left-handed helix and held together by a variety of intermolecular interactions. Remarkably, the functional sugar units, glucuronic acids, are orderly positioned on the fibril surface, making them readily accessible to the solvent. This distinctive spatial configuration allows the designed glycopeptide fibril to effectively mimic key GAG functionalities, including the promotion of cell proliferation, cell migration, and osteogenic differentiation. Our findings offer a structural framework for designing glycan functionalities on glycopeptide fibrils and open avenues for developing glycopeptide-based materials with versatile biological activities. This work further enhances the potential of these materials for applications in therapeutic and regenerative medicine.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c07039\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c07039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Design and Structural Elucidation of Glycopeptide Fibrils: Emulating Glycosaminoglycan Functions for Biomedical Applications
Glycosaminoglycans (GAGs) are essential polysaccharides crucial for various cellular functions, such as cell proliferation, migration, and differentiation. However, their complex structure and variability from natural sources pose challenges for functional studies and therapeutic applications. In this study, we engineered a glycopeptide that assembles into fibrils, emulating the functional attributes of GAGs. Utilizing cryo-EM, we elucidated the atomic structure of the designed glycopeptide fibril, which is composed of three identical protofilaments intertwined into a left-handed helix and held together by a variety of intermolecular interactions. Remarkably, the functional sugar units, glucuronic acids, are orderly positioned on the fibril surface, making them readily accessible to the solvent. This distinctive spatial configuration allows the designed glycopeptide fibril to effectively mimic key GAG functionalities, including the promotion of cell proliferation, cell migration, and osteogenic differentiation. Our findings offer a structural framework for designing glycan functionalities on glycopeptide fibrils and open avenues for developing glycopeptide-based materials with versatile biological activities. This work further enhances the potential of these materials for applications in therapeutic and regenerative medicine.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.