{"title":"基于不连续伽辽金时间离散的波动方程的唯一延拓","authors":"Erik Burman, Janosch Preuss","doi":"10.1093/imanum/draf036","DOIUrl":null,"url":null,"abstract":"We consider a stable unique continuation problem for the wave equation that has been discretized so far using fairly sophisticated space-time methods. Here, we propose to solve this problem using a standard discontinuous Galerkin method for the temporal discretization. Error estimates are established under a geometric control condition. We also investigate two preconditioning strategies that can be used to solve the arising globally coupled space-time system by means of simple time-stepping procedures. Our numerical experiments test the performance of these strategies and highlight the importance of the geometric control condition for reconstructing the solution beyond the data domain.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"3 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unique continuation for the wave equation based on a discontinuous Galerkin time discretization\",\"authors\":\"Erik Burman, Janosch Preuss\",\"doi\":\"10.1093/imanum/draf036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a stable unique continuation problem for the wave equation that has been discretized so far using fairly sophisticated space-time methods. Here, we propose to solve this problem using a standard discontinuous Galerkin method for the temporal discretization. Error estimates are established under a geometric control condition. We also investigate two preconditioning strategies that can be used to solve the arising globally coupled space-time system by means of simple time-stepping procedures. Our numerical experiments test the performance of these strategies and highlight the importance of the geometric control condition for reconstructing the solution beyond the data domain.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf036\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf036","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Unique continuation for the wave equation based on a discontinuous Galerkin time discretization
We consider a stable unique continuation problem for the wave equation that has been discretized so far using fairly sophisticated space-time methods. Here, we propose to solve this problem using a standard discontinuous Galerkin method for the temporal discretization. Error estimates are established under a geometric control condition. We also investigate two preconditioning strategies that can be used to solve the arising globally coupled space-time system by means of simple time-stepping procedures. Our numerical experiments test the performance of these strategies and highlight the importance of the geometric control condition for reconstructing the solution beyond the data domain.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.