W. Knafo, T. Thebault, S. Raymond, P. Manuel, D. D. Khalyavin, F. Orlandi, E. Ressouche, K. Beauvois, G. Lapertot, K. Kaneko, D. Aoki, D. Braithwaite, G. Knebel
{"title":"压力下UTe2的不相称反铁磁性","authors":"W. Knafo, T. Thebault, S. Raymond, P. Manuel, D. D. Khalyavin, F. Orlandi, E. Ressouche, K. Beauvois, G. Lapertot, K. Kaneko, D. Aoki, D. Braithwaite, G. Knebel","doi":"10.1103/physrevx.15.021075","DOIUrl":null,"url":null,"abstract":"The discovery of multiple superconducting phases in UTe</a:mi></a:mrow>2</a:mn></a:mrow></a:msub></a:mrow></a:math> boosted research on correlated-electron physics. This heavy-fermion paramagnet was rapidly identified as a reference compound to study the interplay between magnetism and unconventional superconductivity with multiple degrees of freedom. The proximity to a ferromagnetic quantum phase transition was initially proposed as a driving force to triplet-pairing superconductivity. However, we find here that long-range incommensurate antiferromagnetic order is established under pressure. The propagation vector <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi mathvariant=\"bold\">k</c:mi><c:mi mathvariant=\"bold\">m</c:mi></c:msub><c:mo>=</c:mo><c:mo stretchy=\"false\">(</c:mo><c:mn>0.07</c:mn><c:mo>,</c:mo><c:mn>0.33</c:mn><c:mo>,</c:mo><c:mn>1</c:mn><c:mo stretchy=\"false\">)</c:mo></c:math> of the antiferromagnetic phase is close to a wave vector where antiferromagnetic fluctuations have previously been observed at ambient pressure. These elements support that <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:msub><i:mrow><i:mi>UTe</i:mi></i:mrow><i:mrow><i:mn>2</i:mn></i:mrow></i:msub></i:mrow></i:math> is a nearly antiferromagnet at ambient pressure. Our work appeals for theories modeling the evolution of the magnetic interactions and electronic properties, driving a correlated paramagnetic regime at ambient pressure to a long-range antiferromagnetic order under pressure. A deeper understanding of itinerant-<k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>f</k:mi></k:math>-electron magnetism in <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:msub><m:mrow><m:mi>UTe</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:mrow></m:math> will be a key for describing its unconventional superconducting phases. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"41 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incommensurate Antiferromagnetism in UTe2 under Pressure\",\"authors\":\"W. Knafo, T. Thebault, S. Raymond, P. Manuel, D. D. Khalyavin, F. Orlandi, E. Ressouche, K. Beauvois, G. Lapertot, K. Kaneko, D. Aoki, D. Braithwaite, G. Knebel\",\"doi\":\"10.1103/physrevx.15.021075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of multiple superconducting phases in UTe</a:mi></a:mrow>2</a:mn></a:mrow></a:msub></a:mrow></a:math> boosted research on correlated-electron physics. This heavy-fermion paramagnet was rapidly identified as a reference compound to study the interplay between magnetism and unconventional superconductivity with multiple degrees of freedom. The proximity to a ferromagnetic quantum phase transition was initially proposed as a driving force to triplet-pairing superconductivity. However, we find here that long-range incommensurate antiferromagnetic order is established under pressure. The propagation vector <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi mathvariant=\\\"bold\\\">k</c:mi><c:mi mathvariant=\\\"bold\\\">m</c:mi></c:msub><c:mo>=</c:mo><c:mo stretchy=\\\"false\\\">(</c:mo><c:mn>0.07</c:mn><c:mo>,</c:mo><c:mn>0.33</c:mn><c:mo>,</c:mo><c:mn>1</c:mn><c:mo stretchy=\\\"false\\\">)</c:mo></c:math> of the antiferromagnetic phase is close to a wave vector where antiferromagnetic fluctuations have previously been observed at ambient pressure. These elements support that <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mrow><i:msub><i:mrow><i:mi>UTe</i:mi></i:mrow><i:mrow><i:mn>2</i:mn></i:mrow></i:msub></i:mrow></i:math> is a nearly antiferromagnet at ambient pressure. Our work appeals for theories modeling the evolution of the magnetic interactions and electronic properties, driving a correlated paramagnetic regime at ambient pressure to a long-range antiferromagnetic order under pressure. A deeper understanding of itinerant-<k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>f</k:mi></k:math>-electron magnetism in <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mrow><m:msub><m:mrow><m:mi>UTe</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:mrow></m:math> will be a key for describing its unconventional superconducting phases. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021075\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021075","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Incommensurate Antiferromagnetism in UTe2 under Pressure
The discovery of multiple superconducting phases in UTe2 boosted research on correlated-electron physics. This heavy-fermion paramagnet was rapidly identified as a reference compound to study the interplay between magnetism and unconventional superconductivity with multiple degrees of freedom. The proximity to a ferromagnetic quantum phase transition was initially proposed as a driving force to triplet-pairing superconductivity. However, we find here that long-range incommensurate antiferromagnetic order is established under pressure. The propagation vector km=(0.07,0.33,1) of the antiferromagnetic phase is close to a wave vector where antiferromagnetic fluctuations have previously been observed at ambient pressure. These elements support that UTe2 is a nearly antiferromagnet at ambient pressure. Our work appeals for theories modeling the evolution of the magnetic interactions and electronic properties, driving a correlated paramagnetic regime at ambient pressure to a long-range antiferromagnetic order under pressure. A deeper understanding of itinerant-f-electron magnetism in UTe2 will be a key for describing its unconventional superconducting phases. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.