含Zn/In双空位Zn2In2S5上协同光催化H2解离和苯甲醇C-C偶联反应

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Ran Wang, Minmin Ma, Shengyao Qian, Li Shi and Xiaoxiang Xu
{"title":"含Zn/In双空位Zn2In2S5上协同光催化H2解离和苯甲醇C-C偶联反应","authors":"Ran Wang, Minmin Ma, Shengyao Qian, Li Shi and Xiaoxiang Xu","doi":"10.1039/D5QI00867K","DOIUrl":null,"url":null,"abstract":"<p >Photocatalytic benzyl alcohol (BA) conversion is a promising approach for coproducing H<small><sub>2</sub></small> and value-added chemicals but is subject to low efficiency. Here, a dual defect engineering strategy has been applied to Zn<small><sub>2</sub></small>In<small><sub>2</sub></small>S<small><sub>5</sub></small>, <em>i.e.</em> by constructing both Zn and In vacancies (V<small><sub>Zn</sub></small>/V<small><sub>In</sub></small>), which enables efficient BA conversion to H<small><sub>2</sub></small> and valuable carbon–carbon (C–C) coupling compounds. Compared with previous strategies using V<small><sub>Zn</sub></small> defects alone, our dual-defect strategy is more effective at separating photocarriers and thus can provide more usable photocarriers for BA conversion. With the optimized dual-defect content, Zn<small><sub>2</sub></small>In<small><sub>2</sub></small>S<small><sub>5</sub></small> can deliver an apparent quantum yield (AQY) as high as 8.3% at 420 ± 20 nm for the generation of the C–C coupling compounds. DFT calculations reveal that the V<small><sub>Zn</sub></small>/V<small><sub>In</sub></small> dual defects can (1) endow the photogenerated electrons with high mobility and high reducing power, (2) enlarge the energetically downhill step for the formation of ketyl radicals, and (3) lower the energy barriers for the coupling of ketyl radicals. These findings not only expand the toolbox for the design and modification of semiconductor photocatalysts but also provide an in-depth understanding of the role of various defects in photocatalytic BA conversion.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 20","pages":" 6326-6334"},"PeriodicalIF":6.4000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative photocatalytic H2 liberation and benzyl alcohol C–C coupling reactions on Zn2In2S5 embracing Zn/In dual vacancies†\",\"authors\":\"Ran Wang, Minmin Ma, Shengyao Qian, Li Shi and Xiaoxiang Xu\",\"doi\":\"10.1039/D5QI00867K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photocatalytic benzyl alcohol (BA) conversion is a promising approach for coproducing H<small><sub>2</sub></small> and value-added chemicals but is subject to low efficiency. Here, a dual defect engineering strategy has been applied to Zn<small><sub>2</sub></small>In<small><sub>2</sub></small>S<small><sub>5</sub></small>, <em>i.e.</em> by constructing both Zn and In vacancies (V<small><sub>Zn</sub></small>/V<small><sub>In</sub></small>), which enables efficient BA conversion to H<small><sub>2</sub></small> and valuable carbon–carbon (C–C) coupling compounds. Compared with previous strategies using V<small><sub>Zn</sub></small> defects alone, our dual-defect strategy is more effective at separating photocarriers and thus can provide more usable photocarriers for BA conversion. With the optimized dual-defect content, Zn<small><sub>2</sub></small>In<small><sub>2</sub></small>S<small><sub>5</sub></small> can deliver an apparent quantum yield (AQY) as high as 8.3% at 420 ± 20 nm for the generation of the C–C coupling compounds. DFT calculations reveal that the V<small><sub>Zn</sub></small>/V<small><sub>In</sub></small> dual defects can (1) endow the photogenerated electrons with high mobility and high reducing power, (2) enlarge the energetically downhill step for the formation of ketyl radicals, and (3) lower the energy barriers for the coupling of ketyl radicals. These findings not only expand the toolbox for the design and modification of semiconductor photocatalysts but also provide an in-depth understanding of the role of various defects in photocatalytic BA conversion.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 20\",\"pages\":\" 6326-6334\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d5qi00867k\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d5qi00867k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

光催化苯甲醇(BA)转化是一种有前景的合成气和高附加值化学品,但效率较低。在Zn2In2S5中采用了双缺陷工程策略,即同时构建Zn和In空位(VZn/VIn),从而使BA高效转化为H2和有价值的碳-碳(C-C)偶联化合物。与以往单独使用VZn缺陷的策略相比,我们的双缺陷策略更有效地分离光载流子,从而为BA转换提供更多可用的光载流子。在优化的双缺陷含量下,Zn2In2S5在420±20 nm处生成C-C偶联化合物的表观量子产率(AQY)高达8.3%。DFT计算表明,VZn/VIn双缺陷可以(1)为光生电子提供高迁移率和高还原能力,(2)扩大了形成基自由基的能量下坡步骤,(3)降低了基自由基耦合的能垒。这些发现不仅扩大了半导体光催化剂的设计和修饰工具箱,而且还提供了对各种缺陷在光催化BA转化中的作用的深入理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cooperative photocatalytic H2 liberation and benzyl alcohol C–C coupling reactions on Zn2In2S5 embracing Zn/In dual vacancies†

Cooperative photocatalytic H2 liberation and benzyl alcohol C–C coupling reactions on Zn2In2S5 embracing Zn/In dual vacancies†

Photocatalytic benzyl alcohol (BA) conversion is a promising approach for coproducing H2 and value-added chemicals but is subject to low efficiency. Here, a dual defect engineering strategy has been applied to Zn2In2S5, i.e. by constructing both Zn and In vacancies (VZn/VIn), which enables efficient BA conversion to H2 and valuable carbon–carbon (C–C) coupling compounds. Compared with previous strategies using VZn defects alone, our dual-defect strategy is more effective at separating photocarriers and thus can provide more usable photocarriers for BA conversion. With the optimized dual-defect content, Zn2In2S5 can deliver an apparent quantum yield (AQY) as high as 8.3% at 420 ± 20 nm for the generation of the C–C coupling compounds. DFT calculations reveal that the VZn/VIn dual defects can (1) endow the photogenerated electrons with high mobility and high reducing power, (2) enlarge the energetically downhill step for the formation of ketyl radicals, and (3) lower the energy barriers for the coupling of ketyl radicals. These findings not only expand the toolbox for the design and modification of semiconductor photocatalysts but also provide an in-depth understanding of the role of various defects in photocatalytic BA conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信