表型和转录组学分析揭示了橡胶树株高相关的关键基因和候选基因HbFLA11的功能特征。

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY
Plant Genome Pub Date : 2025-06-01 DOI:10.1002/tpg2.70048
Baoyi Yang, Yuanyuan Zhang, Weiguo Li, Xiao Huang, Xinsheng Gao, Juncang Qi, Xiangjun Wang
{"title":"表型和转录组学分析揭示了橡胶树株高相关的关键基因和候选基因HbFLA11的功能特征。","authors":"Baoyi Yang, Yuanyuan Zhang, Weiguo Li, Xiao Huang, Xinsheng Gao, Juncang Qi, Xiangjun Wang","doi":"10.1002/tpg2.70048","DOIUrl":null,"url":null,"abstract":"<p><p>The rubber tree (Hevea brasiliensis) is an important species in global natural rubber production. However, the mechanisms regulating the height of rubber trees remain poorly understood. In previous work, the dwarf mutant MU73397 was obtained through ethyl methanesulfonate mutagenesis. Compared to the wild-type CATAS73397, MU73397 exhibited significantly reduced plant height and stem diameter, slower xylem development, and decreased cellulose and lignin content. Phytohormone analysis revealed that gibberellin levels were reduced in both the apex and stem of MU73397, while jasmonic acid was increased in the apex and auxin was reduced in the stem. These differences in hormone levels may contribute to the dwarf phenotype. Transcriptome analysis identified nine key genes related to cell wall biosynthesis and hormone signaling, namely, FLA11 (Fasciclin-like arabinogalactan protein 11), TUBB1 (Tubulin Beta 1), TUBB6 (Tubulin Beta 6), CESA7 (cellulose synthase A 7), TUBA4 (Tubulin Alpha 4), LAC17 (Laccase 7), CTL2 (Chitinase-like protein 2), IRX9 (Irregular xylem 9), and KOR (korrigan). Overexpression of HbFLA11 in transgenic poplar resulted in significant increases in plant height and stem diameter. Gibberellin signaling genes and cell wall biosynthesis genes were significantly upregulated in the transgenic lines. These results suggest that HbFLA11 is involved in gibberellin signaling and cell wall biosynthesis, thereby regulating plant growth. This study provides valuable genetic resources and research foundations for targeted trait breeding in rubber tree.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":"18 2","pages":"e70048"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenotypic and transcriptomic analysis reveals key genes associated with plant height in rubber tree and functional characterization of the candidate gene HbFLA11.\",\"authors\":\"Baoyi Yang, Yuanyuan Zhang, Weiguo Li, Xiao Huang, Xinsheng Gao, Juncang Qi, Xiangjun Wang\",\"doi\":\"10.1002/tpg2.70048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rubber tree (Hevea brasiliensis) is an important species in global natural rubber production. However, the mechanisms regulating the height of rubber trees remain poorly understood. In previous work, the dwarf mutant MU73397 was obtained through ethyl methanesulfonate mutagenesis. Compared to the wild-type CATAS73397, MU73397 exhibited significantly reduced plant height and stem diameter, slower xylem development, and decreased cellulose and lignin content. Phytohormone analysis revealed that gibberellin levels were reduced in both the apex and stem of MU73397, while jasmonic acid was increased in the apex and auxin was reduced in the stem. These differences in hormone levels may contribute to the dwarf phenotype. Transcriptome analysis identified nine key genes related to cell wall biosynthesis and hormone signaling, namely, FLA11 (Fasciclin-like arabinogalactan protein 11), TUBB1 (Tubulin Beta 1), TUBB6 (Tubulin Beta 6), CESA7 (cellulose synthase A 7), TUBA4 (Tubulin Alpha 4), LAC17 (Laccase 7), CTL2 (Chitinase-like protein 2), IRX9 (Irregular xylem 9), and KOR (korrigan). Overexpression of HbFLA11 in transgenic poplar resulted in significant increases in plant height and stem diameter. Gibberellin signaling genes and cell wall biosynthesis genes were significantly upregulated in the transgenic lines. These results suggest that HbFLA11 is involved in gibberellin signaling and cell wall biosynthesis, thereby regulating plant growth. This study provides valuable genetic resources and research foundations for targeted trait breeding in rubber tree.</p>\",\"PeriodicalId\":49002,\"journal\":{\"name\":\"Plant Genome\",\"volume\":\"18 2\",\"pages\":\"e70048\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/tpg2.70048\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.70048","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

橡胶树(Hevea brasiliensis)是全球天然橡胶生产的重要树种。然而,调控橡胶树高度的机制仍然知之甚少。在以前的工作中,通过甲基磺酸乙酯诱变获得了矮突变体MU73397。与野生型CATAS73397相比,MU73397株高和茎粗显著降低,木质部发育减慢,纤维素和木质素含量降低。植物激素分析表明,MU73397茎尖和茎尖赤霉素含量均降低,茉莉酸含量升高,茎尖生长素含量降低。这些激素水平的差异可能导致侏儒表型。转录组分析鉴定出9个与细胞壁生物合成和激素信号传导相关的关键基因,分别是FLA11 (fasiclin -like arabinogalactan protein 11)、TUBB1 (Tubulin Beta 1)、TUBB6 (Tubulin Beta 6)、CESA7(纤维素合成酶a7)、TUBA4 (Tubulin Alpha 4)、LAC17(漆酶7)、CTL2(几丁质酶样蛋白2)、IRX9(不规则木质部9)和KOR (korrigan)。HbFLA11基因在转基因杨树中的过表达,使其株高和茎粗显著增加。赤霉素信号基因和细胞壁生物合成基因在转基因系中显著上调。这些结果表明HbFLA11参与赤霉素信号转导和细胞壁生物合成,从而调节植物生长。本研究为橡胶树的定向性状育种提供了宝贵的遗传资源和研究基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phenotypic and transcriptomic analysis reveals key genes associated with plant height in rubber tree and functional characterization of the candidate gene HbFLA11.

The rubber tree (Hevea brasiliensis) is an important species in global natural rubber production. However, the mechanisms regulating the height of rubber trees remain poorly understood. In previous work, the dwarf mutant MU73397 was obtained through ethyl methanesulfonate mutagenesis. Compared to the wild-type CATAS73397, MU73397 exhibited significantly reduced plant height and stem diameter, slower xylem development, and decreased cellulose and lignin content. Phytohormone analysis revealed that gibberellin levels were reduced in both the apex and stem of MU73397, while jasmonic acid was increased in the apex and auxin was reduced in the stem. These differences in hormone levels may contribute to the dwarf phenotype. Transcriptome analysis identified nine key genes related to cell wall biosynthesis and hormone signaling, namely, FLA11 (Fasciclin-like arabinogalactan protein 11), TUBB1 (Tubulin Beta 1), TUBB6 (Tubulin Beta 6), CESA7 (cellulose synthase A 7), TUBA4 (Tubulin Alpha 4), LAC17 (Laccase 7), CTL2 (Chitinase-like protein 2), IRX9 (Irregular xylem 9), and KOR (korrigan). Overexpression of HbFLA11 in transgenic poplar resulted in significant increases in plant height and stem diameter. Gibberellin signaling genes and cell wall biosynthesis genes were significantly upregulated in the transgenic lines. These results suggest that HbFLA11 is involved in gibberellin signaling and cell wall biosynthesis, thereby regulating plant growth. This study provides valuable genetic resources and research foundations for targeted trait breeding in rubber tree.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Genome
Plant Genome PLANT SCIENCES-GENETICS & HEREDITY
CiteScore
6.00
自引率
4.80%
发文量
93
审稿时长
>12 weeks
期刊介绍: The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信