Zhenzhen Zhang, Hongliang Zhang, Lei Feng, Antong Wang, Zijie Lin, Cunyi Tan, Efren Gonzalez, Tarabryn Grismer, Shou-Ling Xu, Zhi-Yong Wang
{"title":"拟南芥UPL3促进饥饿胁迫下BZR1降解、生长停滞和幼苗存活。","authors":"Zhenzhen Zhang, Hongliang Zhang, Lei Feng, Antong Wang, Zijie Lin, Cunyi Tan, Efren Gonzalez, Tarabryn Grismer, Shou-Ling Xu, Zhi-Yong Wang","doi":"10.1016/j.xplc.2025.101389","DOIUrl":null,"url":null,"abstract":"<p><p>Sugar-mediated regulation of hormone signaling is crucial for optimizing growth under normal conditions and ensuring survival during environmental stress. Previous studies have shown that sugar starvation induces the degradation of BRASSINAZOLE RESISTANT 1 (BZR1), the master transcription factor of the brassinosteroid (BR) signaling pathway, thereby inhibiting growth. However, the molecular mechanism linking sugar signaling to BZR1 degradation remains unknown. To identify proteins that mediate starvation-induced BZR1 degradation, we performed a quantitative proteomic analysis of the BZR1 interactome under starvation conditions and identified UBIQUITIN PROTEIN LIGASE 3 (UPL3) as a sugar-regulated protein that promotes BZR1 degradation and regulates growth and survival in response to sugar availability. upl3 mutants showed increased BZR1 accumulation and larger seedling size compared to the wild type under sugar-limiting conditions, but not when grown on sugar-containing medium, which indicates that UPL3 mediates BZR1 degradation and growth inhibition under sugar-limited conditions. Although upl3 mutations promoted growth under short-term starvation, they substantially reduced survival under long-term starvation. The enhanced growth phenotype of upl3 was also observed when target of rapamycin (TOR) was inactivated, but not when BR biosynthesis was blocked, suggesting that UPL3 acts downstream of sugar-TOR signaling to regulate BZR1 degradation. Furthermore, UPL3 protein levels increased post-transcriptionally in response to starvation and TOR inhibition, and decreased upon sugar treatment. Our study identifies UPL3 as a key molecular link between sugar signaling and BR signaling. We propose that sugar-TOR signaling inhibits UPL3 to promote BZR1 accumulation and growth, thereby optimizing plant growth and survival in response to sugar availability.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101389"},"PeriodicalIF":11.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281193/pdf/","citationCount":"0","resultStr":"{\"title\":\"UPL3 promotes BZR1 degradation, growth arrest, and seedling survival under starvation stress in Arabidopsis.\",\"authors\":\"Zhenzhen Zhang, Hongliang Zhang, Lei Feng, Antong Wang, Zijie Lin, Cunyi Tan, Efren Gonzalez, Tarabryn Grismer, Shou-Ling Xu, Zhi-Yong Wang\",\"doi\":\"10.1016/j.xplc.2025.101389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sugar-mediated regulation of hormone signaling is crucial for optimizing growth under normal conditions and ensuring survival during environmental stress. Previous studies have shown that sugar starvation induces the degradation of BRASSINAZOLE RESISTANT 1 (BZR1), the master transcription factor of the brassinosteroid (BR) signaling pathway, thereby inhibiting growth. However, the molecular mechanism linking sugar signaling to BZR1 degradation remains unknown. To identify proteins that mediate starvation-induced BZR1 degradation, we performed a quantitative proteomic analysis of the BZR1 interactome under starvation conditions and identified UBIQUITIN PROTEIN LIGASE 3 (UPL3) as a sugar-regulated protein that promotes BZR1 degradation and regulates growth and survival in response to sugar availability. upl3 mutants showed increased BZR1 accumulation and larger seedling size compared to the wild type under sugar-limiting conditions, but not when grown on sugar-containing medium, which indicates that UPL3 mediates BZR1 degradation and growth inhibition under sugar-limited conditions. Although upl3 mutations promoted growth under short-term starvation, they substantially reduced survival under long-term starvation. The enhanced growth phenotype of upl3 was also observed when target of rapamycin (TOR) was inactivated, but not when BR biosynthesis was blocked, suggesting that UPL3 acts downstream of sugar-TOR signaling to regulate BZR1 degradation. Furthermore, UPL3 protein levels increased post-transcriptionally in response to starvation and TOR inhibition, and decreased upon sugar treatment. Our study identifies UPL3 as a key molecular link between sugar signaling and BR signaling. We propose that sugar-TOR signaling inhibits UPL3 to promote BZR1 accumulation and growth, thereby optimizing plant growth and survival in response to sugar availability.</p>\",\"PeriodicalId\":52373,\"journal\":{\"name\":\"Plant Communications\",\"volume\":\" \",\"pages\":\"101389\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281193/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xplc.2025.101389\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2025.101389","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
激素信号的糖调节对正常条件下的生长优化和环境胁迫下的生存至关重要。先前的研究表明,糖饥饿会导致油菜素内酯(BRASSINAZOLE RESISTANT 1, BR)信号通路的主转录因子BZR1 (BRASSINAZOLE RESISTANT 1, BZR1)降解,从而抑制生长。糖信号和BZR1降解之间的分子联系尚不清楚。为了鉴定介导饥饿诱导的BZR1降解的蛋白质,本研究对饥饿条件下BZR1相互作用组进行了定量蛋白质组学分析,发现UBIQUITIN PROTEIN LIGASE 3 (UPL3)是一种糖调节蛋白,可介导BZR1降解,并根据糖的可用性调节生长和存活。在限糖条件下,与野生型相比,upl3突变体BZR1的积累量和幼苗大小增加,而在含糖培养基上则没有增加,说明在限糖条件下,upl3介导了BZR1的降解和生长抑制。在短期饥饿下,upl3突变增加了生长,但在长期饥饿处理后,up3突变显著降低了存活率。当雷帕霉素靶蛋白(Target of Rapamycin, TOR)失活时,upl3的生长表型增加,而当BR合成受阻时,upl3的生长表型增加,这与upl3调节糖-TOR信号下游的BZR1降解一致。此外,UPL3蛋白水平在转录后通过饥饿和TOR抑制而升高,而糖处理则降低。我们的研究发现UPL3是糖调控BR信号的关键分子链接。sugar - tor信号抑制UPL3,促进BZR1积累和生长,从而根据糖效度优化生长和存活。
UPL3 promotes BZR1 degradation, growth arrest, and seedling survival under starvation stress in Arabidopsis.
Sugar-mediated regulation of hormone signaling is crucial for optimizing growth under normal conditions and ensuring survival during environmental stress. Previous studies have shown that sugar starvation induces the degradation of BRASSINAZOLE RESISTANT 1 (BZR1), the master transcription factor of the brassinosteroid (BR) signaling pathway, thereby inhibiting growth. However, the molecular mechanism linking sugar signaling to BZR1 degradation remains unknown. To identify proteins that mediate starvation-induced BZR1 degradation, we performed a quantitative proteomic analysis of the BZR1 interactome under starvation conditions and identified UBIQUITIN PROTEIN LIGASE 3 (UPL3) as a sugar-regulated protein that promotes BZR1 degradation and regulates growth and survival in response to sugar availability. upl3 mutants showed increased BZR1 accumulation and larger seedling size compared to the wild type under sugar-limiting conditions, but not when grown on sugar-containing medium, which indicates that UPL3 mediates BZR1 degradation and growth inhibition under sugar-limited conditions. Although upl3 mutations promoted growth under short-term starvation, they substantially reduced survival under long-term starvation. The enhanced growth phenotype of upl3 was also observed when target of rapamycin (TOR) was inactivated, but not when BR biosynthesis was blocked, suggesting that UPL3 acts downstream of sugar-TOR signaling to regulate BZR1 degradation. Furthermore, UPL3 protein levels increased post-transcriptionally in response to starvation and TOR inhibition, and decreased upon sugar treatment. Our study identifies UPL3 as a key molecular link between sugar signaling and BR signaling. We propose that sugar-TOR signaling inhibits UPL3 to promote BZR1 accumulation and growth, thereby optimizing plant growth and survival in response to sugar availability.
期刊介绍:
Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.