Tim Nicholson-Shaw, Megan E Dowdle, Yasmeen Ajaj, Mark Perelis, Amit Fulzele, Gene W Yeo, Eric J Bennett, Jens Lykke-Andersen
{"title":"人类CCR4 deadenylase同源物Angel1是一个不间断的mRNA衰变因子。","authors":"Tim Nicholson-Shaw, Megan E Dowdle, Yasmeen Ajaj, Mark Perelis, Amit Fulzele, Gene W Yeo, Eric J Bennett, Jens Lykke-Andersen","doi":"10.1261/rna.080399.125","DOIUrl":null,"url":null,"abstract":"<p><p>Translation elongation stalls trigger mRNA decay and degradation of the nascent polypeptide via translation-dependent quality control pathways. One such pathway, non-stop mRNA decay (NSD), targets aberrant mRNAs that lack stop codons, for example, due to premature polyadenylation. Here we identify Angel1, a CCR4 deadenylase homolog whose biochemical activity remains poorly defined, as a rate-limiting factor for NSD in human cells. Angel1 associates with mRNA coding regions and proteins involved in ribosome-associated quality control and mRNA decay, consistent with a factor that monitors translation elongation stalls. Depletion of Angel1 causes stabilization of reporter mRNAs that are targeted for NSD by the absence of stop codons, but not an mRNA targeted for nonsense-mediated decay. A conserved catalytic residue of Angel1 is critical for its function in NSD. Our findings identify Angel1 as a human NSD factor and suggest that Angel1 catalytic activity plays a critical role in the NSD pathway.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1195-1205"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265940/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human CCR4 deadenylase homolog Angel1 is a non-stop mRNA decay factor.\",\"authors\":\"Tim Nicholson-Shaw, Megan E Dowdle, Yasmeen Ajaj, Mark Perelis, Amit Fulzele, Gene W Yeo, Eric J Bennett, Jens Lykke-Andersen\",\"doi\":\"10.1261/rna.080399.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Translation elongation stalls trigger mRNA decay and degradation of the nascent polypeptide via translation-dependent quality control pathways. One such pathway, non-stop mRNA decay (NSD), targets aberrant mRNAs that lack stop codons, for example, due to premature polyadenylation. Here we identify Angel1, a CCR4 deadenylase homolog whose biochemical activity remains poorly defined, as a rate-limiting factor for NSD in human cells. Angel1 associates with mRNA coding regions and proteins involved in ribosome-associated quality control and mRNA decay, consistent with a factor that monitors translation elongation stalls. Depletion of Angel1 causes stabilization of reporter mRNAs that are targeted for NSD by the absence of stop codons, but not an mRNA targeted for nonsense-mediated decay. A conserved catalytic residue of Angel1 is critical for its function in NSD. Our findings identify Angel1 as a human NSD factor and suggest that Angel1 catalytic activity plays a critical role in the NSD pathway.</p>\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\" \",\"pages\":\"1195-1205\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265940/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.080399.125\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080399.125","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Human CCR4 deadenylase homolog Angel1 is a non-stop mRNA decay factor.
Translation elongation stalls trigger mRNA decay and degradation of the nascent polypeptide via translation-dependent quality control pathways. One such pathway, non-stop mRNA decay (NSD), targets aberrant mRNAs that lack stop codons, for example, due to premature polyadenylation. Here we identify Angel1, a CCR4 deadenylase homolog whose biochemical activity remains poorly defined, as a rate-limiting factor for NSD in human cells. Angel1 associates with mRNA coding regions and proteins involved in ribosome-associated quality control and mRNA decay, consistent with a factor that monitors translation elongation stalls. Depletion of Angel1 causes stabilization of reporter mRNAs that are targeted for NSD by the absence of stop codons, but not an mRNA targeted for nonsense-mediated decay. A conserved catalytic residue of Angel1 is critical for its function in NSD. Our findings identify Angel1 as a human NSD factor and suggest that Angel1 catalytic activity plays a critical role in the NSD pathway.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.