Annika Neuhaus-Harr, Lina Ojeda-Prieto, Xiaoyuan Zhang, Jörg-Peter Schnitzler, Wolfgang W Weisser, Robin Heinen
{"title":"三色堇蚜虫种群大小受植物化学成分的影响,但不受地下食草性的影响。","authors":"Annika Neuhaus-Harr, Lina Ojeda-Prieto, Xiaoyuan Zhang, Jörg-Peter Schnitzler, Wolfgang W Weisser, Robin Heinen","doi":"10.1007/s10886-025-01609-y","DOIUrl":null,"url":null,"abstract":"<p><p>Plants are hosts for above- and belowground insect communities that can influence each other via above-belowground plant-physiological dynamics. To mediate interactions, plants produce secondary metabolites, including terpenoids, and mixtures can differ intraspecifically. While intraspecific variation in plant chemistry gained increased interest, the extent to which intraspecific differences in plant chemistry mediate above-belowground interactions of herbivores remains unclear. We used a full factorial design with six distinct terpenoid chemotypes, differing in their chemical diversity of tansy (Tanacetum vulgare). We exposed these to the aboveground herbivore Macrosiphoniella tanacetaria (Hemiptera: Aphididae), the belowground herbivore Agriotes sp. (Coleoptera: Elateridae), no herbivore or both herbivores, to determine if chemotypes or the chemical diversity of plant compounds affected aphid performance and if the interactions between herbivores were mediated by the chemical profile. We found that aphid colony size differed between chemotypes, with the strongest colony increase over time in a mixed chemotype, and the weakest in a β-thujone chemotype. Root herbivory had no effect on aphid colony size, regardless of the chemotype. Aphid colony size was positively correlated with terpenoid evenness, but not with terpenoid Shannon diversity, terpenoid richness, or relative terpenoid concentration. Tansy chemotypes differed in their morphological responses (final plant height and final plant dry weight) and average leaf chlorophyll content to aboveground herbivory, whereas belowground herbivory exerted minimal impacts. Overall, our results show that intraspecific variation in terpenoid profiles directly modify ecological interactions on a plant, with plant chemistry mediating aphid performance and chemotypes differing in their morphological responses to herbivory.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":"51 3","pages":"63"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122609/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aphid Colony Size in Tansy is Affected by Plant Chemical Composition but not by Belowground Herbivory.\",\"authors\":\"Annika Neuhaus-Harr, Lina Ojeda-Prieto, Xiaoyuan Zhang, Jörg-Peter Schnitzler, Wolfgang W Weisser, Robin Heinen\",\"doi\":\"10.1007/s10886-025-01609-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants are hosts for above- and belowground insect communities that can influence each other via above-belowground plant-physiological dynamics. To mediate interactions, plants produce secondary metabolites, including terpenoids, and mixtures can differ intraspecifically. While intraspecific variation in plant chemistry gained increased interest, the extent to which intraspecific differences in plant chemistry mediate above-belowground interactions of herbivores remains unclear. We used a full factorial design with six distinct terpenoid chemotypes, differing in their chemical diversity of tansy (Tanacetum vulgare). We exposed these to the aboveground herbivore Macrosiphoniella tanacetaria (Hemiptera: Aphididae), the belowground herbivore Agriotes sp. (Coleoptera: Elateridae), no herbivore or both herbivores, to determine if chemotypes or the chemical diversity of plant compounds affected aphid performance and if the interactions between herbivores were mediated by the chemical profile. We found that aphid colony size differed between chemotypes, with the strongest colony increase over time in a mixed chemotype, and the weakest in a β-thujone chemotype. Root herbivory had no effect on aphid colony size, regardless of the chemotype. Aphid colony size was positively correlated with terpenoid evenness, but not with terpenoid Shannon diversity, terpenoid richness, or relative terpenoid concentration. Tansy chemotypes differed in their morphological responses (final plant height and final plant dry weight) and average leaf chlorophyll content to aboveground herbivory, whereas belowground herbivory exerted minimal impacts. Overall, our results show that intraspecific variation in terpenoid profiles directly modify ecological interactions on a plant, with plant chemistry mediating aphid performance and chemotypes differing in their morphological responses to herbivory.</p>\",\"PeriodicalId\":15346,\"journal\":{\"name\":\"Journal of Chemical Ecology\",\"volume\":\"51 3\",\"pages\":\"63\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122609/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10886-025-01609-y\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-025-01609-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Aphid Colony Size in Tansy is Affected by Plant Chemical Composition but not by Belowground Herbivory.
Plants are hosts for above- and belowground insect communities that can influence each other via above-belowground plant-physiological dynamics. To mediate interactions, plants produce secondary metabolites, including terpenoids, and mixtures can differ intraspecifically. While intraspecific variation in plant chemistry gained increased interest, the extent to which intraspecific differences in plant chemistry mediate above-belowground interactions of herbivores remains unclear. We used a full factorial design with six distinct terpenoid chemotypes, differing in their chemical diversity of tansy (Tanacetum vulgare). We exposed these to the aboveground herbivore Macrosiphoniella tanacetaria (Hemiptera: Aphididae), the belowground herbivore Agriotes sp. (Coleoptera: Elateridae), no herbivore or both herbivores, to determine if chemotypes or the chemical diversity of plant compounds affected aphid performance and if the interactions between herbivores were mediated by the chemical profile. We found that aphid colony size differed between chemotypes, with the strongest colony increase over time in a mixed chemotype, and the weakest in a β-thujone chemotype. Root herbivory had no effect on aphid colony size, regardless of the chemotype. Aphid colony size was positively correlated with terpenoid evenness, but not with terpenoid Shannon diversity, terpenoid richness, or relative terpenoid concentration. Tansy chemotypes differed in their morphological responses (final plant height and final plant dry weight) and average leaf chlorophyll content to aboveground herbivory, whereas belowground herbivory exerted minimal impacts. Overall, our results show that intraspecific variation in terpenoid profiles directly modify ecological interactions on a plant, with plant chemistry mediating aphid performance and chemotypes differing in their morphological responses to herbivory.
期刊介绍:
Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature.
Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.