{"title":"SLC-25A46通过FZO-1/Mitofusin调控线粒体融合。","authors":"Hiroyuki Obinata, Taisei Watanabe, Hironori Takahashi, Satoshi Shimo, Toshiyuki Oda, Asako Sugimoto, Shinsuke Niwa","doi":"10.1242/jcs.263571","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are dynamic organelles shaped by sequential fission and fusion events. The mitochondrial protein SLC25A46 has been identified as a causative gene for mitochondrial neuropathies. However, the function of SLC25A46 in mitochondrial morphogenesis remains controversial, with several reports suggesting it acts as a mitochondrial fission factor, whereas others propose it as a fusion factor. In this study, employing forward genetics, we identified slc-25A46, a Caenorhabditis elegans ortholog of human SLC25A46, as an essential factor for mitochondrial fusion. Suppressor mutagenesis screening revealed loss-of-function mutations in drp-1, a mitochondrial fission factor, as suppressors of slc-25A46. The phenotype of slc-25A46 mutants is similar to that of mutants in the worm mitofusin ortholog fzo-1, wherein the mitochondrial fusion factor is disrupted. Overexpressing FZO-1 mitigated mitochondrial defects in slc-25a46 mutants, indicating that SLC-25A46 promotes fusion through FZO-1. Disease model worms carrying mutations associated with SLC25A46 exhibited mitochondrial fragmentation and accelerated neurodegeneration, suggesting that slc-25A46 maintains neuronal morphology through regulating mitochondrial fusion regulation.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SLC-25A46 regulates mitochondrial fusion through the mitofusin protein FZO-1 and is essential for maintaining neuronal morphology.\",\"authors\":\"Hiroyuki Obinata, Taisei Watanabe, Hironori Takahashi, Satoshi Shimo, Toshiyuki Oda, Asako Sugimoto, Shinsuke Niwa\",\"doi\":\"10.1242/jcs.263571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are dynamic organelles shaped by sequential fission and fusion events. The mitochondrial protein SLC25A46 has been identified as a causative gene for mitochondrial neuropathies. However, the function of SLC25A46 in mitochondrial morphogenesis remains controversial, with several reports suggesting it acts as a mitochondrial fission factor, whereas others propose it as a fusion factor. In this study, employing forward genetics, we identified slc-25A46, a Caenorhabditis elegans ortholog of human SLC25A46, as an essential factor for mitochondrial fusion. Suppressor mutagenesis screening revealed loss-of-function mutations in drp-1, a mitochondrial fission factor, as suppressors of slc-25A46. The phenotype of slc-25A46 mutants is similar to that of mutants in the worm mitofusin ortholog fzo-1, wherein the mitochondrial fusion factor is disrupted. Overexpressing FZO-1 mitigated mitochondrial defects in slc-25a46 mutants, indicating that SLC-25A46 promotes fusion through FZO-1. Disease model worms carrying mutations associated with SLC25A46 exhibited mitochondrial fragmentation and accelerated neurodegeneration, suggesting that slc-25A46 maintains neuronal morphology through regulating mitochondrial fusion regulation.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.263571\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263571","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
SLC-25A46 regulates mitochondrial fusion through the mitofusin protein FZO-1 and is essential for maintaining neuronal morphology.
Mitochondria are dynamic organelles shaped by sequential fission and fusion events. The mitochondrial protein SLC25A46 has been identified as a causative gene for mitochondrial neuropathies. However, the function of SLC25A46 in mitochondrial morphogenesis remains controversial, with several reports suggesting it acts as a mitochondrial fission factor, whereas others propose it as a fusion factor. In this study, employing forward genetics, we identified slc-25A46, a Caenorhabditis elegans ortholog of human SLC25A46, as an essential factor for mitochondrial fusion. Suppressor mutagenesis screening revealed loss-of-function mutations in drp-1, a mitochondrial fission factor, as suppressors of slc-25A46. The phenotype of slc-25A46 mutants is similar to that of mutants in the worm mitofusin ortholog fzo-1, wherein the mitochondrial fusion factor is disrupted. Overexpressing FZO-1 mitigated mitochondrial defects in slc-25a46 mutants, indicating that SLC-25A46 promotes fusion through FZO-1. Disease model worms carrying mutations associated with SLC25A46 exhibited mitochondrial fragmentation and accelerated neurodegeneration, suggesting that slc-25A46 maintains neuronal morphology through regulating mitochondrial fusion regulation.