基于蛋白的甲状腺滤泡腺瘤和癌鉴别分类器。

IF 9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Yaoting Sun, He Wang, Lu Li, Jianbiao Wang, Wanyuan Chen, Li Peng, Pingping Hu, Jing Yu, Xue Cai, Nan Yao, Yan Zhou, Jiatong Wang, Yingrui Wang, Liqin Qian, Weigang Ge, Mengni Chen, Feng Yang, Zhiqiang Gui, Wei Sun, Zhihong Wang, Minghua Ge, Yi He, Guangzhi Wang, Yongfu Zhao, Huanjie Chen, Xiaohong Wu, Yuxin Du, Wenjun Wei, Fan Wu, Dingcun Luo, Xiangfeng Lin, Haitao Zheng, Xin Zhu, Bei Wei, Jiafei Shen, Jincao Yao, Zhennan Yuan, Tong Liu, Jun Pan, Yifeng Zhang, Yangfan Lv, Qiaonan Guo, Qijun Wu, Tingting Gong, Ting Chen, Shu Zheng, Jingqiang Zhu, Hanqing Liu, Chuang Chen, Hong Han, Sathiyamoorthy Selvarajan, Michael Mingzhao Xing, Kennichi Kakudo, Erik K Alexander, Yijun Wu, Yu Wang, Dong Xu, Hao Zhang, Xiu Nie, Oi Lian Kon, N Gopalakrishna Iyer, Zhiyan Liu, Yi Zhu, Haixia Guan, Tiannan Guo
{"title":"基于蛋白的甲状腺滤泡腺瘤和癌鉴别分类器。","authors":"Yaoting Sun, He Wang, Lu Li, Jianbiao Wang, Wanyuan Chen, Li Peng, Pingping Hu, Jing Yu, Xue Cai, Nan Yao, Yan Zhou, Jiatong Wang, Yingrui Wang, Liqin Qian, Weigang Ge, Mengni Chen, Feng Yang, Zhiqiang Gui, Wei Sun, Zhihong Wang, Minghua Ge, Yi He, Guangzhi Wang, Yongfu Zhao, Huanjie Chen, Xiaohong Wu, Yuxin Du, Wenjun Wei, Fan Wu, Dingcun Luo, Xiangfeng Lin, Haitao Zheng, Xin Zhu, Bei Wei, Jiafei Shen, Jincao Yao, Zhennan Yuan, Tong Liu, Jun Pan, Yifeng Zhang, Yangfan Lv, Qiaonan Guo, Qijun Wu, Tingting Gong, Ting Chen, Shu Zheng, Jingqiang Zhu, Hanqing Liu, Chuang Chen, Hong Han, Sathiyamoorthy Selvarajan, Michael Mingzhao Xing, Kennichi Kakudo, Erik K Alexander, Yijun Wu, Yu Wang, Dong Xu, Hao Zhang, Xiu Nie, Oi Lian Kon, N Gopalakrishna Iyer, Zhiyan Liu, Yi Zhu, Haixia Guan, Tiannan Guo","doi":"10.1038/s44321-025-00242-2","DOIUrl":null,"url":null,"abstract":"<p><p>Differentiating follicular thyroid adenoma (FTA) from carcinoma (FTC) remains challenging due to similar histological features separate from invasion. This study developed and validated DNA- and/or protein-based classifiers. A total of 2443 thyroid samples from 1568 patients were obtained from 24 centers in China and Singapore. Next-generation sequencing of a 66-gene panel revealed 41 (62.1%) detectable genes, while 25 were not, showing similar alteration patterns with differing mutation frequencies. Proteomics quantified 10,336 proteins, with 187 dysregulated. A discovery protein-based XGBoost model achieved an AUROC of 0.899 (95% CI, 0.849-0.949), outperforming the gene-based model (AUROC 0.670 [95% CI, 0.612-0.729]). A subsequent 24-protein classifier, developed via targeted mass spectrometry and validated in three independent sets, showed high performance in retrospective cohorts (AUROC 0.871 [95% CI, 0.833-0.910] and 0.853 [95% CI, 0.772-0.934]) and prospective biopsies (AUROC 0.781 [95% CI, 0.563-1.000]). It exhibited a 95.7% negative predictive value for ruling out malignancy. This study presents a promising protein-based approach for the differential diagnosis of FTA and FTC, potentially enhancing diagnostic accuracy and clinical decision-making.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A protein-based classifier for differentiating follicular thyroid adenoma and carcinoma.\",\"authors\":\"Yaoting Sun, He Wang, Lu Li, Jianbiao Wang, Wanyuan Chen, Li Peng, Pingping Hu, Jing Yu, Xue Cai, Nan Yao, Yan Zhou, Jiatong Wang, Yingrui Wang, Liqin Qian, Weigang Ge, Mengni Chen, Feng Yang, Zhiqiang Gui, Wei Sun, Zhihong Wang, Minghua Ge, Yi He, Guangzhi Wang, Yongfu Zhao, Huanjie Chen, Xiaohong Wu, Yuxin Du, Wenjun Wei, Fan Wu, Dingcun Luo, Xiangfeng Lin, Haitao Zheng, Xin Zhu, Bei Wei, Jiafei Shen, Jincao Yao, Zhennan Yuan, Tong Liu, Jun Pan, Yifeng Zhang, Yangfan Lv, Qiaonan Guo, Qijun Wu, Tingting Gong, Ting Chen, Shu Zheng, Jingqiang Zhu, Hanqing Liu, Chuang Chen, Hong Han, Sathiyamoorthy Selvarajan, Michael Mingzhao Xing, Kennichi Kakudo, Erik K Alexander, Yijun Wu, Yu Wang, Dong Xu, Hao Zhang, Xiu Nie, Oi Lian Kon, N Gopalakrishna Iyer, Zhiyan Liu, Yi Zhu, Haixia Guan, Tiannan Guo\",\"doi\":\"10.1038/s44321-025-00242-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Differentiating follicular thyroid adenoma (FTA) from carcinoma (FTC) remains challenging due to similar histological features separate from invasion. This study developed and validated DNA- and/or protein-based classifiers. A total of 2443 thyroid samples from 1568 patients were obtained from 24 centers in China and Singapore. Next-generation sequencing of a 66-gene panel revealed 41 (62.1%) detectable genes, while 25 were not, showing similar alteration patterns with differing mutation frequencies. Proteomics quantified 10,336 proteins, with 187 dysregulated. A discovery protein-based XGBoost model achieved an AUROC of 0.899 (95% CI, 0.849-0.949), outperforming the gene-based model (AUROC 0.670 [95% CI, 0.612-0.729]). A subsequent 24-protein classifier, developed via targeted mass spectrometry and validated in three independent sets, showed high performance in retrospective cohorts (AUROC 0.871 [95% CI, 0.833-0.910] and 0.853 [95% CI, 0.772-0.934]) and prospective biopsies (AUROC 0.781 [95% CI, 0.563-1.000]). It exhibited a 95.7% negative predictive value for ruling out malignancy. This study presents a promising protein-based approach for the differential diagnosis of FTA and FTC, potentially enhancing diagnostic accuracy and clinical decision-making.</p>\",\"PeriodicalId\":11597,\"journal\":{\"name\":\"EMBO Molecular Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s44321-025-00242-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00242-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

滤泡性甲状腺腺瘤(FTA)与癌(FTC)的鉴别仍然具有挑战性,因为其组织学特征与浸润性甲状腺腺瘤相似。本研究开发并验证了基于DNA和/或蛋白质的分类器。来自中国和新加坡24个中心的1568名患者共2443份甲状腺样本。对66个基因面板的下一代测序显示41个(62.1%)可检测基因,而25个不可检测基因,显示出相似的突变模式,不同的突变频率。蛋白质组学定量了10,336个蛋白,其中187个蛋白失调。基于发现蛋白的XGBoost模型的AUROC为0.899 (95% CI, 0.849-0.949),优于基于基因的模型(AUROC为0.670 [95% CI, 0.612-0.729])。随后通过靶向质谱法开发的24蛋白分类器在三个独立的集合中进行了验证,在回顾性队列中(AUROC为0.871 [95% CI, 0.833-0.910]和0.853 [95% CI, 0.772-0.934])和前瞻性活检中(AUROC为0.781 [95% CI, 0.563-1.000])表现出了很高的性能。排除恶性肿瘤的阴性预测值为95.7%。本研究提出了一种基于蛋白质的FTA和FTC鉴别诊断方法,有望提高诊断准确性和临床决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A protein-based classifier for differentiating follicular thyroid adenoma and carcinoma.

Differentiating follicular thyroid adenoma (FTA) from carcinoma (FTC) remains challenging due to similar histological features separate from invasion. This study developed and validated DNA- and/or protein-based classifiers. A total of 2443 thyroid samples from 1568 patients were obtained from 24 centers in China and Singapore. Next-generation sequencing of a 66-gene panel revealed 41 (62.1%) detectable genes, while 25 were not, showing similar alteration patterns with differing mutation frequencies. Proteomics quantified 10,336 proteins, with 187 dysregulated. A discovery protein-based XGBoost model achieved an AUROC of 0.899 (95% CI, 0.849-0.949), outperforming the gene-based model (AUROC 0.670 [95% CI, 0.612-0.729]). A subsequent 24-protein classifier, developed via targeted mass spectrometry and validated in three independent sets, showed high performance in retrospective cohorts (AUROC 0.871 [95% CI, 0.833-0.910] and 0.853 [95% CI, 0.772-0.934]) and prospective biopsies (AUROC 0.781 [95% CI, 0.563-1.000]). It exhibited a 95.7% negative predictive value for ruling out malignancy. This study presents a promising protein-based approach for the differential diagnosis of FTA and FTC, potentially enhancing diagnostic accuracy and clinical decision-making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMBO Molecular Medicine
EMBO Molecular Medicine 医学-医学:研究与实验
CiteScore
17.70
自引率
0.90%
发文量
105
审稿时长
4-8 weeks
期刊介绍: EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance. To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields: Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention). Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease. Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信