{"title":"顺铂前药结合聚合物载体在纳米药物靶向治疗原位肝癌中的作用。","authors":"Zhijian Li, Lan Luo, Zhan Wang, Jie Hou","doi":"10.2174/0118715206347681250312142125","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The toxic effects of cisplatin limit its therapeutic efficacy on hepatocellular carcinoma (HCC). Cisplatin(IV) (Pt(IV)) with better stability needs an effective drug delivery strategy. Here, we explored the toxic and inhibitory effects and cell Pt contents of monomethoxyl poly(ethylene glycol)-block-poly(ecaprolactone)- block-poly(L-lysine) (MPEG-b-PCL-b-PLL)/Pt(IV) micelles (M(P3)) on HCC, and evaluated the therapeutic effect of (M (Pt (IV)) on HCC in vitro and in vivo.</p><p><strong>Methods: </strong>We successfully constructed HCC model in BALB/c mice and prepared M(P3). The H22 and HepG2 cells were incubated with cisplatin, M(P3), and cisPt(IV)-(COOH)2 at 2, 10, 20, 50, 100 and 250 μM equivalent platinum (Pt) concentrations for 48 h and at 5 μM for 2/6 h. The HCC mice received cisplatin, M(P3), and cisPt(IV)-(COOH)2 (5 mg equivalent Pt/kg, once a week) for five weeks. The cell activity was assessed by MTT assay. The Pt contents were assayed by an inductively coupled plasma mass spectrometer (ICP-MS). The liver tumor weight was measured. The levels of liver tumor hepatorenal function indicators and malignant indicators were estimated by biochemical analysis and Western blot.</p><p><strong>Results: </strong>The activity of H22 and HepG2 cells: cisPt(IV)-(COOH)2-treated > M(P3)-treated > cisplatin-treated. The Pt contents of H22 and HepG2 cells: M(P3)-treated > cisplatin-treated > cisPt(IV)-(COOH)2-treated cells. The hepatorenal function of HCC mice: M(P3)-treated > cisPt(IV)-(COOH)2-treated > cisplatin-treated. According to the weight and levels of malignant indicators of liver tumor, the therapeutic effect on HCC mice: cisplatintreated > M(P3)-treated > cisPt(IV)-(COOH)2-treated.</p><p><strong>Conclusions: </strong>Although the inhibitory effect of M(P3) on HCC is not as good as cisplatin, M(P3) has significantly lower hepatorenal toxicity and remarkably higher cell Pt contents.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Cisplatin Prodrugs Bonded to Polymer Carriers for Nanodrug-targeted Treatment of In situ Hepatocellular Carcinoma.\",\"authors\":\"Zhijian Li, Lan Luo, Zhan Wang, Jie Hou\",\"doi\":\"10.2174/0118715206347681250312142125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The toxic effects of cisplatin limit its therapeutic efficacy on hepatocellular carcinoma (HCC). Cisplatin(IV) (Pt(IV)) with better stability needs an effective drug delivery strategy. Here, we explored the toxic and inhibitory effects and cell Pt contents of monomethoxyl poly(ethylene glycol)-block-poly(ecaprolactone)- block-poly(L-lysine) (MPEG-b-PCL-b-PLL)/Pt(IV) micelles (M(P3)) on HCC, and evaluated the therapeutic effect of (M (Pt (IV)) on HCC in vitro and in vivo.</p><p><strong>Methods: </strong>We successfully constructed HCC model in BALB/c mice and prepared M(P3). The H22 and HepG2 cells were incubated with cisplatin, M(P3), and cisPt(IV)-(COOH)2 at 2, 10, 20, 50, 100 and 250 μM equivalent platinum (Pt) concentrations for 48 h and at 5 μM for 2/6 h. The HCC mice received cisplatin, M(P3), and cisPt(IV)-(COOH)2 (5 mg equivalent Pt/kg, once a week) for five weeks. The cell activity was assessed by MTT assay. The Pt contents were assayed by an inductively coupled plasma mass spectrometer (ICP-MS). The liver tumor weight was measured. The levels of liver tumor hepatorenal function indicators and malignant indicators were estimated by biochemical analysis and Western blot.</p><p><strong>Results: </strong>The activity of H22 and HepG2 cells: cisPt(IV)-(COOH)2-treated > M(P3)-treated > cisplatin-treated. The Pt contents of H22 and HepG2 cells: M(P3)-treated > cisplatin-treated > cisPt(IV)-(COOH)2-treated cells. The hepatorenal function of HCC mice: M(P3)-treated > cisPt(IV)-(COOH)2-treated > cisplatin-treated. According to the weight and levels of malignant indicators of liver tumor, the therapeutic effect on HCC mice: cisplatintreated > M(P3)-treated > cisPt(IV)-(COOH)2-treated.</p><p><strong>Conclusions: </strong>Although the inhibitory effect of M(P3) on HCC is not as good as cisplatin, M(P3) has significantly lower hepatorenal toxicity and remarkably higher cell Pt contents.</p>\",\"PeriodicalId\":7934,\"journal\":{\"name\":\"Anti-cancer agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer agents in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715206347681250312142125\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206347681250312142125","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
The Role of Cisplatin Prodrugs Bonded to Polymer Carriers for Nanodrug-targeted Treatment of In situ Hepatocellular Carcinoma.
Background: The toxic effects of cisplatin limit its therapeutic efficacy on hepatocellular carcinoma (HCC). Cisplatin(IV) (Pt(IV)) with better stability needs an effective drug delivery strategy. Here, we explored the toxic and inhibitory effects and cell Pt contents of monomethoxyl poly(ethylene glycol)-block-poly(ecaprolactone)- block-poly(L-lysine) (MPEG-b-PCL-b-PLL)/Pt(IV) micelles (M(P3)) on HCC, and evaluated the therapeutic effect of (M (Pt (IV)) on HCC in vitro and in vivo.
Methods: We successfully constructed HCC model in BALB/c mice and prepared M(P3). The H22 and HepG2 cells were incubated with cisplatin, M(P3), and cisPt(IV)-(COOH)2 at 2, 10, 20, 50, 100 and 250 μM equivalent platinum (Pt) concentrations for 48 h and at 5 μM for 2/6 h. The HCC mice received cisplatin, M(P3), and cisPt(IV)-(COOH)2 (5 mg equivalent Pt/kg, once a week) for five weeks. The cell activity was assessed by MTT assay. The Pt contents were assayed by an inductively coupled plasma mass spectrometer (ICP-MS). The liver tumor weight was measured. The levels of liver tumor hepatorenal function indicators and malignant indicators were estimated by biochemical analysis and Western blot.
Results: The activity of H22 and HepG2 cells: cisPt(IV)-(COOH)2-treated > M(P3)-treated > cisplatin-treated. The Pt contents of H22 and HepG2 cells: M(P3)-treated > cisplatin-treated > cisPt(IV)-(COOH)2-treated cells. The hepatorenal function of HCC mice: M(P3)-treated > cisPt(IV)-(COOH)2-treated > cisplatin-treated. According to the weight and levels of malignant indicators of liver tumor, the therapeutic effect on HCC mice: cisplatintreated > M(P3)-treated > cisPt(IV)-(COOH)2-treated.
Conclusions: Although the inhibitory effect of M(P3) on HCC is not as good as cisplatin, M(P3) has significantly lower hepatorenal toxicity and remarkably higher cell Pt contents.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.