{"title":"分枝杆菌蛋氨酸氨基肽酶1c型作为30S核糖体亚基的抗关联因子。","authors":"Aneek Banerjee, Krishnamoorthi Srinivasan, Jayati Sengupta","doi":"10.1016/j.jmb.2025.169230","DOIUrl":null,"url":null,"abstract":"<div><div>Methionine aminopeptidase (MetAP) is a vital metalloprotease that plays a crucial role in protein synthesis by binding to the 70S ribosome at the peptide exit tunnel and removing the N-terminal methionine from nascent polypeptide chains. In <em>Escherichia coli</em>, a single subclass of type 1 MetAP is present, whereas mycobacteria possess two subclasses, MetAP1a and MetAP1c. The key difference between these two is the presence of an additional 40 amino acid-long N-terminal extension in MetAP1c, which may contribute to distinct functional properties. In this study, we have uncovered a previously unrecognized “moonlighting” function of MetAP1c in mycobacteria. Interestingly, our results show that MetAP1c expression is specifically enhanced during the stationary phase of bacterial growth. Moreover, we identify a unique interaction between MetAP1c and the 30S ribosomal subunit, revealing its distinctive affinity for the small subunit. A 4.7 Å cryo-EM map of the <em>Mycobacterium smegmatis</em> MetAP1c-30S subunit complex demonstrates for the first time that MetAP1c binds at the inter-subunit face of the 30S subunit head region. The binding of MetAP1c induces conformational changes in the 30S subunit, impairing its ability to associate with the 50S subunit, thus imparting an anti-association property to MetAP1c. To further understand the role of the N-terminal extension, we constructed two mutant variants of MetAP1c, which confirmed its critical involvement in this moonlighting function. This anti-association activity of MetAP1c is likely one of the energy conservation mechanisms in mycobacteria where MetAP1c is involved in translation down regulation during stationary phase.</div></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"437 17","pages":"Article 169230"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mycobacterial Methionine Aminopeptidase Type 1c Moonlights as an Anti-association Factor on the 30S Ribosomal Subunit\",\"authors\":\"Aneek Banerjee, Krishnamoorthi Srinivasan, Jayati Sengupta\",\"doi\":\"10.1016/j.jmb.2025.169230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Methionine aminopeptidase (MetAP) is a vital metalloprotease that plays a crucial role in protein synthesis by binding to the 70S ribosome at the peptide exit tunnel and removing the N-terminal methionine from nascent polypeptide chains. In <em>Escherichia coli</em>, a single subclass of type 1 MetAP is present, whereas mycobacteria possess two subclasses, MetAP1a and MetAP1c. The key difference between these two is the presence of an additional 40 amino acid-long N-terminal extension in MetAP1c, which may contribute to distinct functional properties. In this study, we have uncovered a previously unrecognized “moonlighting” function of MetAP1c in mycobacteria. Interestingly, our results show that MetAP1c expression is specifically enhanced during the stationary phase of bacterial growth. Moreover, we identify a unique interaction between MetAP1c and the 30S ribosomal subunit, revealing its distinctive affinity for the small subunit. A 4.7 Å cryo-EM map of the <em>Mycobacterium smegmatis</em> MetAP1c-30S subunit complex demonstrates for the first time that MetAP1c binds at the inter-subunit face of the 30S subunit head region. The binding of MetAP1c induces conformational changes in the 30S subunit, impairing its ability to associate with the 50S subunit, thus imparting an anti-association property to MetAP1c. To further understand the role of the N-terminal extension, we constructed two mutant variants of MetAP1c, which confirmed its critical involvement in this moonlighting function. This anti-association activity of MetAP1c is likely one of the energy conservation mechanisms in mycobacteria where MetAP1c is involved in translation down regulation during stationary phase.</div></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\"437 17\",\"pages\":\"Article 169230\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283625002967\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283625002967","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mycobacterial Methionine Aminopeptidase Type 1c Moonlights as an Anti-association Factor on the 30S Ribosomal Subunit
Methionine aminopeptidase (MetAP) is a vital metalloprotease that plays a crucial role in protein synthesis by binding to the 70S ribosome at the peptide exit tunnel and removing the N-terminal methionine from nascent polypeptide chains. In Escherichia coli, a single subclass of type 1 MetAP is present, whereas mycobacteria possess two subclasses, MetAP1a and MetAP1c. The key difference between these two is the presence of an additional 40 amino acid-long N-terminal extension in MetAP1c, which may contribute to distinct functional properties. In this study, we have uncovered a previously unrecognized “moonlighting” function of MetAP1c in mycobacteria. Interestingly, our results show that MetAP1c expression is specifically enhanced during the stationary phase of bacterial growth. Moreover, we identify a unique interaction between MetAP1c and the 30S ribosomal subunit, revealing its distinctive affinity for the small subunit. A 4.7 Å cryo-EM map of the Mycobacterium smegmatis MetAP1c-30S subunit complex demonstrates for the first time that MetAP1c binds at the inter-subunit face of the 30S subunit head region. The binding of MetAP1c induces conformational changes in the 30S subunit, impairing its ability to associate with the 50S subunit, thus imparting an anti-association property to MetAP1c. To further understand the role of the N-terminal extension, we constructed two mutant variants of MetAP1c, which confirmed its critical involvement in this moonlighting function. This anti-association activity of MetAP1c is likely one of the energy conservation mechanisms in mycobacteria where MetAP1c is involved in translation down regulation during stationary phase.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.