{"title":"谐波捕获双电子量子点的结构特性和量子信息理论测度","authors":"Santanu Mondal, Jayanta K. Saha, Amlan K. Roy","doi":"10.1002/qua.70056","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accurate estimation of structural properties is essential for understanding the behavior of atomic systems, particularly in confined environments where they display unique physical phenomena. Amongst these, the correlation energy plays a pivotal role in shaping the overall dynamics of the system. In this study, we investigate the influence of external confinement on both correlation energy and Collins' conjecture by evaluating different quantum information and quantum entanglement entropies. For this purpose, we model a two-electron quantum dot using an isotropic harmonic potential to explore these effects. Various geometrical properties are estimated to showcase the acceptability and viability of the present method. Additionally, we investigate the impact of harmonic confinement on the quantum similarity measures e.g. quantum similarity index and quantum dissimilarity between He<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mo> </mo>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{+} $$</annotation>\n </semantics></math>(1<span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <msup>\n <mrow>\n <mspace></mspace>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>S</mi>\n </mrow>\n <annotation>$$ {s}^2\\mathrm{S} $$</annotation>\n </semantics></math>) and He(1<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>s</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <msup>\n <mrow>\n <mspace></mspace>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mi>S</mi>\n </mrow>\n <annotation>$$ {s}^{21}\\mathrm{S} $$</annotation>\n </semantics></math> and 1<span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mn>2</mn>\n <mi>s</mi>\n <msup>\n <mrow>\n <mspace></mspace>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n <mi>S</mi>\n </mrow>\n <annotation>$$ s2{s}^{1,3}\\mathrm{S} $$</annotation>\n </semantics></math>), as well as between He(1<span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mn>2</mn>\n <mi>s</mi>\n <msup>\n <mrow>\n <mspace></mspace>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mi>S</mi>\n </mrow>\n <annotation>$$ s2{s}^1\\mathrm{S} $$</annotation>\n </semantics></math>) and He(1<span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mn>2</mn>\n <mi>s</mi>\n <msup>\n <mrow>\n <mspace></mspace>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n <mi>S</mi>\n </mrow>\n <annotation>$$ s2{s}^3\\mathrm{S} $$</annotation>\n </semantics></math>). These results for both ground and singly excited states of two-electron system are reported here for first time.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 11","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Properties and Quantum Information Theoretic Measures of a Harmonically Trapped Two-Electron Quantum Dot\",\"authors\":\"Santanu Mondal, Jayanta K. Saha, Amlan K. Roy\",\"doi\":\"10.1002/qua.70056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Accurate estimation of structural properties is essential for understanding the behavior of atomic systems, particularly in confined environments where they display unique physical phenomena. Amongst these, the correlation energy plays a pivotal role in shaping the overall dynamics of the system. In this study, we investigate the influence of external confinement on both correlation energy and Collins' conjecture by evaluating different quantum information and quantum entanglement entropies. For this purpose, we model a two-electron quantum dot using an isotropic harmonic potential to explore these effects. Various geometrical properties are estimated to showcase the acceptability and viability of the present method. Additionally, we investigate the impact of harmonic confinement on the quantum similarity measures e.g. quantum similarity index and quantum dissimilarity between He<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mo> </mo>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^{+} $$</annotation>\\n </semantics></math>(1<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <msup>\\n <mrow>\\n <mspace></mspace>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mi>S</mi>\\n </mrow>\\n <annotation>$$ {s}^2\\\\mathrm{S} $$</annotation>\\n </semantics></math>) and He(1<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <msup>\\n <mrow>\\n <mspace></mspace>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mi>S</mi>\\n </mrow>\\n <annotation>$$ {s}^{21}\\\\mathrm{S} $$</annotation>\\n </semantics></math> and 1<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mn>2</mn>\\n <mi>s</mi>\\n <msup>\\n <mrow>\\n <mspace></mspace>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n <mi>S</mi>\\n </mrow>\\n <annotation>$$ s2{s}^{1,3}\\\\mathrm{S} $$</annotation>\\n </semantics></math>), as well as between He(1<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mn>2</mn>\\n <mi>s</mi>\\n <msup>\\n <mrow>\\n <mspace></mspace>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mi>S</mi>\\n </mrow>\\n <annotation>$$ s2{s}^1\\\\mathrm{S} $$</annotation>\\n </semantics></math>) and He(1<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mn>2</mn>\\n <mi>s</mi>\\n <msup>\\n <mrow>\\n <mspace></mspace>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n <mi>S</mi>\\n </mrow>\\n <annotation>$$ s2{s}^3\\\\mathrm{S} $$</annotation>\\n </semantics></math>). These results for both ground and singly excited states of two-electron system are reported here for first time.</p>\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"125 11\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.70056\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70056","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
准确估计结构性质对于理解原子系统的行为至关重要,特别是在它们显示独特物理现象的受限环境中。其中,相关能在系统整体动力学的形成中起着举足轻重的作用。在本研究中,我们通过评估不同的量子信息和量子纠缠熵来研究外约束对相关能和Collins猜想的影响。为此,我们使用各向同性谐波势来模拟双电子量子点来探索这些效应。估计了各种几何性质,以展示本方法的可接受性和可行性。此外,研究了谐波约束对He + $$ {}^{+} $$ (1 s)之间量子相似度指标和量子不相似度的影响2 S $$ {s}^2\mathrm{S} $$)和He(1 S 2 1)S $$ {s}^{21}\mathrm{S} $$和1 S 2 S 1, 3 S $$ s2{s}^{1,3}\mathrm{S} $$),以及He(1s2s1s $$ s2{s}^1\mathrm{S} $$)和He(1s2s)之间的关系3 S $$ s2{s}^3\mathrm{S} $$)。本文首次报道了双电子系统的基态和单激发态的结果。
Structural Properties and Quantum Information Theoretic Measures of a Harmonically Trapped Two-Electron Quantum Dot
Accurate estimation of structural properties is essential for understanding the behavior of atomic systems, particularly in confined environments where they display unique physical phenomena. Amongst these, the correlation energy plays a pivotal role in shaping the overall dynamics of the system. In this study, we investigate the influence of external confinement on both correlation energy and Collins' conjecture by evaluating different quantum information and quantum entanglement entropies. For this purpose, we model a two-electron quantum dot using an isotropic harmonic potential to explore these effects. Various geometrical properties are estimated to showcase the acceptability and viability of the present method. Additionally, we investigate the impact of harmonic confinement on the quantum similarity measures e.g. quantum similarity index and quantum dissimilarity between He(1) and He(1 and 1), as well as between He(1) and He(1). These results for both ground and singly excited states of two-electron system are reported here for first time.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.