基于时空显著性的无偏对比学习视频场景图生成

IF 9.7 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Weijun Zhuang;Bowen Dong;Zhilin Zhu;Zhijun Li;Jie Liu;Yaowei Wang;Xiaopeng Hong;Xin Li;Wangmeng Zuo
{"title":"基于时空显著性的无偏对比学习视频场景图生成","authors":"Weijun Zhuang;Bowen Dong;Zhilin Zhu;Zhijun Li;Jie Liu;Yaowei Wang;Xiaopeng Hong;Xin Li;Wangmeng Zuo","doi":"10.1109/TMM.2025.3557688","DOIUrl":null,"url":null,"abstract":"Accurately detecting objects and their interrelationships for Video Scene Graph Generation (VidSGG) confronts two primary challenges. The first involves the identification of active objects interacting with humans from the numerous background objects, while the second challenge is long-tailed distribution among predicate classes. To tackle these challenges, we propose STABILE, a novel framework with a spatial-temporal saliency-guided contrastive learning scheme. For the first challenge, STABILE features an active object retriever that includes an object saliency fusion block for enhancing object embeddings with motion cues alongside an object temporal encoder to capture temporal dependencies. For the second challenge, STABILE introduces an unbiased relationship representation learning module with an Unbiased Multi-Label (UML) contrastive loss to mitigate the effect of long-tailed distribution. With the enhancements in both aspects, STABILE substantially boosts the accuracy of scene graph generation. Extensive experiments demonstrate the superiority of STABILE, setting new benchmarks in the field by offering enhanced accuracy and unbiased scene graph generation.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"3092-3104"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial-Temporal Saliency Guided Unbiased Contrastive Learning for Video Scene Graph Generation\",\"authors\":\"Weijun Zhuang;Bowen Dong;Zhilin Zhu;Zhijun Li;Jie Liu;Yaowei Wang;Xiaopeng Hong;Xin Li;Wangmeng Zuo\",\"doi\":\"10.1109/TMM.2025.3557688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately detecting objects and their interrelationships for Video Scene Graph Generation (VidSGG) confronts two primary challenges. The first involves the identification of active objects interacting with humans from the numerous background objects, while the second challenge is long-tailed distribution among predicate classes. To tackle these challenges, we propose STABILE, a novel framework with a spatial-temporal saliency-guided contrastive learning scheme. For the first challenge, STABILE features an active object retriever that includes an object saliency fusion block for enhancing object embeddings with motion cues alongside an object temporal encoder to capture temporal dependencies. For the second challenge, STABILE introduces an unbiased relationship representation learning module with an Unbiased Multi-Label (UML) contrastive loss to mitigate the effect of long-tailed distribution. With the enhancements in both aspects, STABILE substantially boosts the accuracy of scene graph generation. Extensive experiments demonstrate the superiority of STABILE, setting new benchmarks in the field by offering enhanced accuracy and unbiased scene graph generation.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"3092-3104\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10948366/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10948366/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在视频场景图生成(VidSGG)中,准确检测目标及其相互关系面临两个主要挑战。第一个挑战涉及从众多背景对象中识别与人类交互的活动对象,而第二个挑战是谓词类之间的长尾分布。为了应对这些挑战,我们提出了STABILE,这是一个具有时空显著性引导的对比学习方案的新框架。对于第一个挑战,STABILE具有一个活动对象检索器,其中包括一个对象显著性融合块,用于增强带有运动线索的对象嵌入,以及一个对象时间编码器,以捕获时间依赖性。对于第二个挑战,STABILE引入了一个带有无偏多标签(unbiased Multi-Label, UML)对比损失的无偏关系表示学习模块,以减轻长尾分布的影响。通过这两方面的增强,STABILE大大提高了场景图生成的准确性。大量的实验证明了STABILE的优越性,通过提供更高的精度和无偏的场景图生成,在该领域树立了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial-Temporal Saliency Guided Unbiased Contrastive Learning for Video Scene Graph Generation
Accurately detecting objects and their interrelationships for Video Scene Graph Generation (VidSGG) confronts two primary challenges. The first involves the identification of active objects interacting with humans from the numerous background objects, while the second challenge is long-tailed distribution among predicate classes. To tackle these challenges, we propose STABILE, a novel framework with a spatial-temporal saliency-guided contrastive learning scheme. For the first challenge, STABILE features an active object retriever that includes an object saliency fusion block for enhancing object embeddings with motion cues alongside an object temporal encoder to capture temporal dependencies. For the second challenge, STABILE introduces an unbiased relationship representation learning module with an Unbiased Multi-Label (UML) contrastive loss to mitigate the effect of long-tailed distribution. With the enhancements in both aspects, STABILE substantially boosts the accuracy of scene graph generation. Extensive experiments demonstrate the superiority of STABILE, setting new benchmarks in the field by offering enhanced accuracy and unbiased scene graph generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信