一个实例级机器人抓取检测的语言驱动框架

IF 9.7 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yunpeng Mei;Jian Sun;Zhihong Peng;Fang Deng;Gang Wang;Jie Chen
{"title":"一个实例级机器人抓取检测的语言驱动框架","authors":"Yunpeng Mei;Jian Sun;Zhihong Peng;Fang Deng;Gang Wang;Jie Chen","doi":"10.1109/TMM.2025.3557685","DOIUrl":null,"url":null,"abstract":"Robotic grasping is a crucial topic in robotics and computer vision, with broad applications in industrial production and intelligent manufacturing. Although some methods have begun addressing instance-level grasping, most remain limited to predefined instances and categories, lacking flexibility for open-vocabulary grasp prediction based on user-specified instructions. To address this, we propose RoG-SAM, a language-driven, instance-level grasp detection framework built on Segment Anything Model (SAM). RoG-SAM utilizes open-vocabulary prompts for object localization and grasp pose prediction, adapting SAM through transfer learning with encoder adapters and multi-head decoders to extend its segmentation capabilities to grasp pose estimation. Experimental results show that RoG-SAM achieves competitive performance on single-object datasets (Cornell and Jacquard) and cluttered datasets (GraspNet-1Billion and OCID), with instance-level accuracies of 91.2% and 90.1%, respectively, while using only 28.3% of SAM's trainable parameters. The effectiveness of RoG-SAM was also validated in real-world environments.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"3057-3068"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RoG-SAM: A Language-Driven Framework for Instance-Level Robotic Grasping Detection\",\"authors\":\"Yunpeng Mei;Jian Sun;Zhihong Peng;Fang Deng;Gang Wang;Jie Chen\",\"doi\":\"10.1109/TMM.2025.3557685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic grasping is a crucial topic in robotics and computer vision, with broad applications in industrial production and intelligent manufacturing. Although some methods have begun addressing instance-level grasping, most remain limited to predefined instances and categories, lacking flexibility for open-vocabulary grasp prediction based on user-specified instructions. To address this, we propose RoG-SAM, a language-driven, instance-level grasp detection framework built on Segment Anything Model (SAM). RoG-SAM utilizes open-vocabulary prompts for object localization and grasp pose prediction, adapting SAM through transfer learning with encoder adapters and multi-head decoders to extend its segmentation capabilities to grasp pose estimation. Experimental results show that RoG-SAM achieves competitive performance on single-object datasets (Cornell and Jacquard) and cluttered datasets (GraspNet-1Billion and OCID), with instance-level accuracies of 91.2% and 90.1%, respectively, while using only 28.3% of SAM's trainable parameters. The effectiveness of RoG-SAM was also validated in real-world environments.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"3057-3068\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10948350/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10948350/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

机器人抓取是机器人技术和计算机视觉领域的一个重要课题,在工业生产和智能制造中有着广泛的应用。尽管一些方法已经开始解决实例级抓取问题,但大多数方法仍然局限于预定义的实例和类别,缺乏基于用户指定指令的开放词汇抓取预测的灵活性。为了解决这个问题,我们提出了一个基于分段任意模型(SAM)的语言驱动的实例级抓取检测框架RoG-SAM。RoG-SAM利用开放词汇提示进行对象定位和抓取姿态预测,通过与编码器适配器和多头解码器的迁移学习来适应SAM,以扩展其分割能力以抓取姿态估计。实验结果表明,RoG-SAM在单对象数据集(Cornell和Jacquard)和杂乱数据集(graspnet - 10亿和ocd)上取得了具有竞争力的性能,实例级准确率分别为91.2%和90.1%,而SAM的可训练参数仅占28.3%。RoG-SAM的有效性也在现实环境中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RoG-SAM: A Language-Driven Framework for Instance-Level Robotic Grasping Detection
Robotic grasping is a crucial topic in robotics and computer vision, with broad applications in industrial production and intelligent manufacturing. Although some methods have begun addressing instance-level grasping, most remain limited to predefined instances and categories, lacking flexibility for open-vocabulary grasp prediction based on user-specified instructions. To address this, we propose RoG-SAM, a language-driven, instance-level grasp detection framework built on Segment Anything Model (SAM). RoG-SAM utilizes open-vocabulary prompts for object localization and grasp pose prediction, adapting SAM through transfer learning with encoder adapters and multi-head decoders to extend its segmentation capabilities to grasp pose estimation. Experimental results show that RoG-SAM achieves competitive performance on single-object datasets (Cornell and Jacquard) and cluttered datasets (GraspNet-1Billion and OCID), with instance-level accuracies of 91.2% and 90.1%, respectively, while using only 28.3% of SAM's trainable parameters. The effectiveness of RoG-SAM was also validated in real-world environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信