基于语义和运动引导的多目标跟踪视觉语言特征对齐

IF 9.7 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yizhe Li;Sanping Zhou;Zheng Qin;Le Wang
{"title":"基于语义和运动引导的多目标跟踪视觉语言特征对齐","authors":"Yizhe Li;Sanping Zhou;Zheng Qin;Le Wang","doi":"10.1109/TMM.2025.3557710","DOIUrl":null,"url":null,"abstract":"Referring Multi-Object Tracking (RMOT) aims to dynamically track an arbitrary number of referred targets in a video sequence according to the language expression. Previous methods mainly focus on cross-modal fusion at the feature level with designed structures. However, the insufficient visual-linguistic alignment is prone to causing visual-linguistic mismatches, leading to some targets being tracked but not correctly referred especially when facing the language expression with complex semantics or motion descriptions. To this end, we propose to conduct visual-linguistic alignment with semantic and kinematic guidance to effectively align the visual features with more diverse language expressions. In this paper, we put forward a novel end-to-end RMOT framework SKTrack, which follows the transformer-based architecture with a Language-Guided Decoder (LGD) and a Motion-Aware Aggregator (MAA). In particular, the LGD performs deep semantic interaction layer-by-layer in a single frame to enhance the alignment ability of the model, while the MAA conducts temporal feature fusion and alignment across multiple frames to enable the alignment between visual targets and language expression with motion descriptions. Extensive experiments on the Refer-KITTI and Refer-KITTI-v2 demonstrate that SKTrack achieves state-of-the-art performance and verify the effectiveness of our framework and its components.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"3034-3044"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual-Linguistic Feature Alignment With Semantic and Kinematic Guidance for Referring Multi-Object Tracking\",\"authors\":\"Yizhe Li;Sanping Zhou;Zheng Qin;Le Wang\",\"doi\":\"10.1109/TMM.2025.3557710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Referring Multi-Object Tracking (RMOT) aims to dynamically track an arbitrary number of referred targets in a video sequence according to the language expression. Previous methods mainly focus on cross-modal fusion at the feature level with designed structures. However, the insufficient visual-linguistic alignment is prone to causing visual-linguistic mismatches, leading to some targets being tracked but not correctly referred especially when facing the language expression with complex semantics or motion descriptions. To this end, we propose to conduct visual-linguistic alignment with semantic and kinematic guidance to effectively align the visual features with more diverse language expressions. In this paper, we put forward a novel end-to-end RMOT framework SKTrack, which follows the transformer-based architecture with a Language-Guided Decoder (LGD) and a Motion-Aware Aggregator (MAA). In particular, the LGD performs deep semantic interaction layer-by-layer in a single frame to enhance the alignment ability of the model, while the MAA conducts temporal feature fusion and alignment across multiple frames to enable the alignment between visual targets and language expression with motion descriptions. Extensive experiments on the Refer-KITTI and Refer-KITTI-v2 demonstrate that SKTrack achieves state-of-the-art performance and verify the effectiveness of our framework and its components.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"3034-3044\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10948370/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10948370/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

参考多目标跟踪(RMOT)的目的是根据语言表达动态跟踪视频序列中任意数量的参考目标。以往的方法主要集中在特征层与设计结构的跨模态融合。然而,视觉语言对齐不足容易造成视觉语言不匹配,导致某些目标被跟踪但没有被正确引用,特别是面对具有复杂语义或动作描述的语言表达时。为此,我们建议通过语义引导和运动引导进行视觉语言对齐,使视觉特征与更多样化的语言表达有效对齐。在本文中,我们提出了一个新的端到端RMOT框架SKTrack,它遵循基于变压器的架构,具有语言引导解码器(LGD)和运动感知聚合器(MAA)。其中,LGD在单帧内逐层进行深度语义交互,增强了模型的对齐能力;MAA跨多帧进行时间特征融合对齐,实现了视觉目标与具有运动描述的语言表达的对齐。在reference - kitti和reference - kitti -v2上进行的大量实验表明,SKTrack达到了最先进的性能,并验证了我们的框架及其组件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual-Linguistic Feature Alignment With Semantic and Kinematic Guidance for Referring Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to dynamically track an arbitrary number of referred targets in a video sequence according to the language expression. Previous methods mainly focus on cross-modal fusion at the feature level with designed structures. However, the insufficient visual-linguistic alignment is prone to causing visual-linguistic mismatches, leading to some targets being tracked but not correctly referred especially when facing the language expression with complex semantics or motion descriptions. To this end, we propose to conduct visual-linguistic alignment with semantic and kinematic guidance to effectively align the visual features with more diverse language expressions. In this paper, we put forward a novel end-to-end RMOT framework SKTrack, which follows the transformer-based architecture with a Language-Guided Decoder (LGD) and a Motion-Aware Aggregator (MAA). In particular, the LGD performs deep semantic interaction layer-by-layer in a single frame to enhance the alignment ability of the model, while the MAA conducts temporal feature fusion and alignment across multiple frames to enable the alignment between visual targets and language expression with motion descriptions. Extensive experiments on the Refer-KITTI and Refer-KITTI-v2 demonstrate that SKTrack achieves state-of-the-art performance and verify the effectiveness of our framework and its components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信