多模态大模型是有效的行动预测器

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Binglu Wang;Yao Tian;Shunzhou Wang;Le Yang
{"title":"多模态大模型是有效的行动预测器","authors":"Binglu Wang;Yao Tian;Shunzhou Wang;Le Yang","doi":"10.1109/TMM.2025.3557615","DOIUrl":null,"url":null,"abstract":"The task of long-term action anticipation demands solutions that can effectively model temporal dynamics over extended periods while deeply understanding the inherent semantics of actions. Traditional approaches, which primarily rely on recurrent units or Transformer layers to capture long-term dependencies, often fall short in addressing these challenges. Large Language Models (LLMs), with their robust sequential modeling capabilities and extensive commonsense knowledge, present new opportunities for long-term action anticipation. In this work, we introduce the ActionLLM framework, a novel approach that treats video sequences as successive tokens, leveraging LLMs to anticipate future actions. Our baseline model simplifies the LLM architecture by setting future tokens, incorporating an action tuning module, and reducing the textual decoder layer to a linear layer, enabling straightforward action prediction without the need for complex instructions or redundant descriptions. To further harness the commonsense reasoning of LLMs, we predict action categories for observed frames and use sequential textual clues to guide semantic understanding. In addition, we introduce a Cross-Modality Interaction Block, designed to explore the specificity within each modality and capture interactions between vision and textual modalities, thereby enhancing multimodal tuning. Extensive experiments on benchmark datasets demonstrate the superiority of the proposed ActionLLM framework, encouraging a promising direction to explore LLMs in the context of action anticipation.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"2949-2960"},"PeriodicalIF":8.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Large Models are Effective Action Anticipators\",\"authors\":\"Binglu Wang;Yao Tian;Shunzhou Wang;Le Yang\",\"doi\":\"10.1109/TMM.2025.3557615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of long-term action anticipation demands solutions that can effectively model temporal dynamics over extended periods while deeply understanding the inherent semantics of actions. Traditional approaches, which primarily rely on recurrent units or Transformer layers to capture long-term dependencies, often fall short in addressing these challenges. Large Language Models (LLMs), with their robust sequential modeling capabilities and extensive commonsense knowledge, present new opportunities for long-term action anticipation. In this work, we introduce the ActionLLM framework, a novel approach that treats video sequences as successive tokens, leveraging LLMs to anticipate future actions. Our baseline model simplifies the LLM architecture by setting future tokens, incorporating an action tuning module, and reducing the textual decoder layer to a linear layer, enabling straightforward action prediction without the need for complex instructions or redundant descriptions. To further harness the commonsense reasoning of LLMs, we predict action categories for observed frames and use sequential textual clues to guide semantic understanding. In addition, we introduce a Cross-Modality Interaction Block, designed to explore the specificity within each modality and capture interactions between vision and textual modalities, thereby enhancing multimodal tuning. Extensive experiments on benchmark datasets demonstrate the superiority of the proposed ActionLLM framework, encouraging a promising direction to explore LLMs in the context of action anticipation.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"2949-2960\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10948357/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10948357/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

长期行动预期的任务要求解决方案能够有效地模拟长时间的时间动态,同时深刻理解行动的固有语义。传统的方法主要依赖于循环单元或Transformer层来获取长期依赖关系,因此在处理这些挑战时往往不足。大型语言模型(llm)具有强大的顺序建模能力和广泛的常识知识,为长期行动预测提供了新的机会。在这项工作中,我们引入了ActionLLM框架,这是一种将视频序列视为连续令牌的新方法,利用llm来预测未来的动作。我们的基线模型通过设置未来令牌、合并动作调优模块和将文本解码器层减少到线性层来简化LLM体系结构,从而实现直接的动作预测,而不需要复杂的指令或冗余的描述。为了进一步利用llm的常识推理,我们预测观察到的框架的动作类别,并使用顺序的文本线索来指导语义理解。此外,我们引入了一个跨模态交互块,旨在探索每种模态的特异性,并捕获视觉和文本模态之间的交互,从而增强多模态调谐。在基准数据集上进行的大量实验证明了所提出的ActionLLM框架的优越性,为在动作预测的背景下探索llm提供了一个有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Large Models are Effective Action Anticipators
The task of long-term action anticipation demands solutions that can effectively model temporal dynamics over extended periods while deeply understanding the inherent semantics of actions. Traditional approaches, which primarily rely on recurrent units or Transformer layers to capture long-term dependencies, often fall short in addressing these challenges. Large Language Models (LLMs), with their robust sequential modeling capabilities and extensive commonsense knowledge, present new opportunities for long-term action anticipation. In this work, we introduce the ActionLLM framework, a novel approach that treats video sequences as successive tokens, leveraging LLMs to anticipate future actions. Our baseline model simplifies the LLM architecture by setting future tokens, incorporating an action tuning module, and reducing the textual decoder layer to a linear layer, enabling straightforward action prediction without the need for complex instructions or redundant descriptions. To further harness the commonsense reasoning of LLMs, we predict action categories for observed frames and use sequential textual clues to guide semantic understanding. In addition, we introduce a Cross-Modality Interaction Block, designed to explore the specificity within each modality and capture interactions between vision and textual modalities, thereby enhancing multimodal tuning. Extensive experiments on benchmark datasets demonstrate the superiority of the proposed ActionLLM framework, encouraging a promising direction to explore LLMs in the context of action anticipation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信