基于原位聚合的三维na3.2 zr1.9 ca0.1 si2po12基复合固体电解质协同设计

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Jin-Seok Yang, Omkar Sangabathula, Chan-Jin Park
{"title":"基于原位聚合的三维na3.2 zr1.9 ca0.1 si2po12基复合固体电解质协同设计","authors":"Jin-Seok Yang,&nbsp;Omkar Sangabathula,&nbsp;Chan-Jin Park","doi":"10.1016/j.jcis.2025.137994","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for sustainable and high-performance energy storage solutions has driven significant advancements in sodium-ion batteries (SIBs) as a cost-effective and eco-friendly alternative to lithium-ion batteries (LIBs). This study introduces a composite solid electrolyte (CSE) designed for solid-state sodium batteries (SSSBs), leveraging a 3D NASICON framework to address challenges associated with ionic conductivity, mechanical stability, and interfacial resistance. The CSE was synthesized through in-situ polymerization of butyl acrylate (BA) within a porous Na<sub>3.2</sub>Zr<sub>1.9</sub>Ca<sub>0.1</sub>Si<sub>2</sub>PO<sub>12</sub> (NZCSP) framework fabricated via a tape casting method. The resulting structure achieved an ionic conductivity of 7.1 × 10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C, electrochemical stability up to 4.88 V versus Na/Na<sup>+</sup>, and a sodium-ion transference number (t<sub>Na</sub><sup>+</sup>) of 0.62. Na|CSE|Na symmetric cells exhibit remarkable sodium stripping/plating stability with minimal overpotential over 1000 h. Na|3D-NZCSP-CSE| Na<sub>3</sub>Mg<sub>0.5</sub>V<sub>1.95</sub>(PO<sub>4</sub>)<sub>3</sub>@C (NVMP@C) cells exhibited excellent performance, retaining 95 % of their initial capacity after 500 cycles at 1.0C and maintaining a specific discharge capacity of 94.4 mAh g<sup>−1</sup>. These findings demonstrate the potential of 3D framework-based CSEs to advance the practical application of SSSBs, offering a pathway to safer, more efficient, and cost-effective energy storage technologies.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"698 ","pages":"Article 137994"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic design of 3D Na3.2Zr1.9Ca0.1Si2PO12-based composite solid electrolyte via in-situ polymerization for solid-state sodium batteries\",\"authors\":\"Jin-Seok Yang,&nbsp;Omkar Sangabathula,&nbsp;Chan-Jin Park\",\"doi\":\"10.1016/j.jcis.2025.137994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing demand for sustainable and high-performance energy storage solutions has driven significant advancements in sodium-ion batteries (SIBs) as a cost-effective and eco-friendly alternative to lithium-ion batteries (LIBs). This study introduces a composite solid electrolyte (CSE) designed for solid-state sodium batteries (SSSBs), leveraging a 3D NASICON framework to address challenges associated with ionic conductivity, mechanical stability, and interfacial resistance. The CSE was synthesized through in-situ polymerization of butyl acrylate (BA) within a porous Na<sub>3.2</sub>Zr<sub>1.9</sub>Ca<sub>0.1</sub>Si<sub>2</sub>PO<sub>12</sub> (NZCSP) framework fabricated via a tape casting method. The resulting structure achieved an ionic conductivity of 7.1 × 10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C, electrochemical stability up to 4.88 V versus Na/Na<sup>+</sup>, and a sodium-ion transference number (t<sub>Na</sub><sup>+</sup>) of 0.62. Na|CSE|Na symmetric cells exhibit remarkable sodium stripping/plating stability with minimal overpotential over 1000 h. Na|3D-NZCSP-CSE| Na<sub>3</sub>Mg<sub>0.5</sub>V<sub>1.95</sub>(PO<sub>4</sub>)<sub>3</sub>@C (NVMP@C) cells exhibited excellent performance, retaining 95 % of their initial capacity after 500 cycles at 1.0C and maintaining a specific discharge capacity of 94.4 mAh g<sup>−1</sup>. These findings demonstrate the potential of 3D framework-based CSEs to advance the practical application of SSSBs, offering a pathway to safer, more efficient, and cost-effective energy storage technologies.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"698 \",\"pages\":\"Article 137994\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725013852\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725013852","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

对可持续和高性能储能解决方案的需求不断增长,推动了钠离子电池(sib)作为锂离子电池(lib)的一种经济高效且环保的替代品的重大进步。本研究介绍了一种专为固态钠电池(SSSBs)设计的复合固体电解质(CSE),利用3D NASICON框架来解决与离子电导率、机械稳定性和界面阻力相关的挑战。在带铸法制备的多孔Na3.2Zr1.9Ca0.1Si2PO12 (NZCSP)框架内,采用原位聚合法制备了丙烯酸丁酯(BA)。该结构在30℃时的离子电导率为7.1 × 10−4 S cm−1,相对于Na/Na+的电化学稳定性高达4.88 V,钠离子转移数(tNa+)为0.62。Na|3D-NZCSP-CSE| Na3Mg0.5V1.95(PO4)3@C (NVMP@C)电池表现出优异的性能,在1.0C下循环500次后仍能保持95%的初始容量,并保持94.4 mAh g−1的比放电容量。这些发现证明了基于3D框架的储能系统在推进SSSBs实际应用方面的潜力,为更安全、更高效、更具成本效益的储能技术提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic design of 3D Na3.2Zr1.9Ca0.1Si2PO12-based composite solid electrolyte via in-situ polymerization for solid-state sodium batteries
The growing demand for sustainable and high-performance energy storage solutions has driven significant advancements in sodium-ion batteries (SIBs) as a cost-effective and eco-friendly alternative to lithium-ion batteries (LIBs). This study introduces a composite solid electrolyte (CSE) designed for solid-state sodium batteries (SSSBs), leveraging a 3D NASICON framework to address challenges associated with ionic conductivity, mechanical stability, and interfacial resistance. The CSE was synthesized through in-situ polymerization of butyl acrylate (BA) within a porous Na3.2Zr1.9Ca0.1Si2PO12 (NZCSP) framework fabricated via a tape casting method. The resulting structure achieved an ionic conductivity of 7.1 × 10−4 S cm−1 at 30 °C, electrochemical stability up to 4.88 V versus Na/Na+, and a sodium-ion transference number (tNa+) of 0.62. Na|CSE|Na symmetric cells exhibit remarkable sodium stripping/plating stability with minimal overpotential over 1000 h. Na|3D-NZCSP-CSE| Na3Mg0.5V1.95(PO4)3@C (NVMP@C) cells exhibited excellent performance, retaining 95 % of their initial capacity after 500 cycles at 1.0C and maintaining a specific discharge capacity of 94.4 mAh g−1. These findings demonstrate the potential of 3D framework-based CSEs to advance the practical application of SSSBs, offering a pathway to safer, more efficient, and cost-effective energy storage technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信