远距离相互作用的哈伯德模型筛选

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Florian Gebhard, Kevin Bauerbach, Örs Legeza
{"title":"远距离相互作用的哈伯德模型筛选","authors":"Florian Gebhard, Kevin Bauerbach, Örs Legeza","doi":"10.1103/physrevb.111.205146","DOIUrl":null,"url":null,"abstract":"We provide solid evidence for the long-standing presumption that model Hamiltonians with short-range interactions faithfully reproduce the physics of the long-range Coulomb interaction in real materials. For this aim, we address a generic Hubbard model that captures the quantum phase transitions between metal, Mott insulator, and charge-density-wave (CDW) insulator, in the absence of Fermi-surface nesting. By comparing the quantum phase diagrams for the 1</a:mn>/</a:mo>r</a:mi></a:mrow></a:math>-Hubbard model on a half-filled chain with nearest-neighbor and <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mrow><b:mn>1</b:mn><b:mo>/</b:mo><b:mi>r</b:mi></b:mrow></b:math>-long-range interactions, we argue that the inclusion of long-range interactions is not crucial for a proper description of interacting many-electron systems. To this end, we employ the density matrix renormalization group method on finite lattices and antiperiodic boundary conditions to determine the quantum phase transitions between the metallic Luttinger liquid for weak interactions, the Mott-Hubbard insulator for dominant on-site interactions, and the CDW insulator for dominant intersite interactions. The two phase diagrams qualitatively agree inasmuch as the quantum phase transitions are continuous in both cases. Moreover, simple Hartree-Fock theory and the atomic limit provide renormalization factors that allow us to quantitatively map the two phase diagrams onto each other. As a practical advantage, our findings imply that computational efforts can be reduced tremendously by using models with short-range interactions only. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"49 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening in Hubbard models with long-range interactions\",\"authors\":\"Florian Gebhard, Kevin Bauerbach, Örs Legeza\",\"doi\":\"10.1103/physrevb.111.205146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide solid evidence for the long-standing presumption that model Hamiltonians with short-range interactions faithfully reproduce the physics of the long-range Coulomb interaction in real materials. For this aim, we address a generic Hubbard model that captures the quantum phase transitions between metal, Mott insulator, and charge-density-wave (CDW) insulator, in the absence of Fermi-surface nesting. By comparing the quantum phase diagrams for the 1</a:mn>/</a:mo>r</a:mi></a:mrow></a:math>-Hubbard model on a half-filled chain with nearest-neighbor and <b:math xmlns:b=\\\"http://www.w3.org/1998/Math/MathML\\\"><b:mrow><b:mn>1</b:mn><b:mo>/</b:mo><b:mi>r</b:mi></b:mrow></b:math>-long-range interactions, we argue that the inclusion of long-range interactions is not crucial for a proper description of interacting many-electron systems. To this end, we employ the density matrix renormalization group method on finite lattices and antiperiodic boundary conditions to determine the quantum phase transitions between the metallic Luttinger liquid for weak interactions, the Mott-Hubbard insulator for dominant on-site interactions, and the CDW insulator for dominant intersite interactions. The two phase diagrams qualitatively agree inasmuch as the quantum phase transitions are continuous in both cases. Moreover, simple Hartree-Fock theory and the atomic limit provide renormalization factors that allow us to quantitatively map the two phase diagrams onto each other. As a practical advantage, our findings imply that computational efforts can be reduced tremendously by using models with short-range interactions only. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.111.205146\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.205146","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们为长期以来的假设提供了确凿的证据,即具有短程相互作用的模型哈密顿量忠实地再现了实际材料中远程库仑相互作用的物理特性。为此,我们提出了一个通用的Hubbard模型,该模型在没有费米表面嵌套的情况下捕获了金属、莫特绝缘体和电荷密度波(CDW)绝缘体之间的量子相变。通过比较半填充链上具有最近邻相互作用和1/r-远程相互作用的1/r-Hubbard模型的量子相图,我们认为包含远程相互作用对于正确描述相互作用的多电子系统不是至关重要的。为此,我们采用有限晶格和反周期边界条件下的密度矩阵重正化群方法,确定了金属Luttinger液体弱相互作用、Mott-Hubbard绝缘子优势场相互作用和CDW绝缘子优势场相互作用之间的量子相变。这两种相图在性质上是一致的,因为在这两种情况下量子相变都是连续的。此外,简单的Hartree-Fock理论和原子极限提供了重整化因子,使我们能够定量地将两个相图映射到彼此上。作为一个实际的优势,我们的研究结果表明,通过使用仅具有短程相互作用的模型,计算工作量可以大大减少。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screening in Hubbard models with long-range interactions
We provide solid evidence for the long-standing presumption that model Hamiltonians with short-range interactions faithfully reproduce the physics of the long-range Coulomb interaction in real materials. For this aim, we address a generic Hubbard model that captures the quantum phase transitions between metal, Mott insulator, and charge-density-wave (CDW) insulator, in the absence of Fermi-surface nesting. By comparing the quantum phase diagrams for the 1/r-Hubbard model on a half-filled chain with nearest-neighbor and 1/r-long-range interactions, we argue that the inclusion of long-range interactions is not crucial for a proper description of interacting many-electron systems. To this end, we employ the density matrix renormalization group method on finite lattices and antiperiodic boundary conditions to determine the quantum phase transitions between the metallic Luttinger liquid for weak interactions, the Mott-Hubbard insulator for dominant on-site interactions, and the CDW insulator for dominant intersite interactions. The two phase diagrams qualitatively agree inasmuch as the quantum phase transitions are continuous in both cases. Moreover, simple Hartree-Fock theory and the atomic limit provide renormalization factors that allow us to quantitatively map the two phase diagrams onto each other. As a practical advantage, our findings imply that computational efforts can be reduced tremendously by using models with short-range interactions only. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信