Jana Königsreiter, Bernhard Gadermaier, H. Martin R. Wilkening
{"title":"w掺杂Na3SbS4的超高离子电导率:晶界效应和纯体输运","authors":"Jana Königsreiter, Bernhard Gadermaier, H. Martin R. Wilkening","doi":"10.1021/jacs.5c05842","DOIUrl":null,"url":null,"abstract":"W-doped Na<sub>3</sub>SbS<sub>4</sub> is a promising solid electrolyte for all-solid-state sodium batteries, exhibiting a sodium (Na<sup>+</sup>) ionic conductivity higher than 30 mS cm<sup>–1</sup> (A. Hayashi, N. Masuzawa, S. Yubuchi, F. Tsuji, C. Hotehama, A. Sakuda, M. Tatsumisago, <i>Nat. Commun.</i> 2019, 10, 5266). This exceptional conductivity arises primarily from the introduction of sodium ion vacancies (V′<sub>Na</sub>) via supervalent substitution of Sb<sup>5+</sup> with W<sup>6+</sup>. Using low-temperature impedance spectroscopy down to <i>T</i> = 113 K (−160 °C), we demonstrate that previously reported room temperature conductivities of Na<sub>2.9</sub>Sb<sub>0.9</sub>W<sub>0.1</sub>S<sub>4</sub> are influenced by grain boundary resistances, which can only be effectively separated from the total conductivity at such low temperatures. Our results indicate that the pure Na<sup>+</sup> bulk conductivity can reach 96 mS cm<sup>–1</sup> (D<sub>σ</sub> = 0.98 × 10<sup>–10</sup> m<sup>2</sup> s<sup>–1</sup>) at room temperature, as extrapolated from accurately measured low-temperature data (1.8 mS cm<sup>–1</sup> at –130 °C). Our study suggests that further minimizing detrimental grain boundary effects enables extraordinarily fast long-range Na<sup>+</sup> ion transport in this sulfide.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Ultra-High Ionic Conductivity in W-Doped Na3SbS4: Grain Boundary Effects and Pure Bulk Transport\",\"authors\":\"Jana Königsreiter, Bernhard Gadermaier, H. Martin R. Wilkening\",\"doi\":\"10.1021/jacs.5c05842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"W-doped Na<sub>3</sub>SbS<sub>4</sub> is a promising solid electrolyte for all-solid-state sodium batteries, exhibiting a sodium (Na<sup>+</sup>) ionic conductivity higher than 30 mS cm<sup>–1</sup> (A. Hayashi, N. Masuzawa, S. Yubuchi, F. Tsuji, C. Hotehama, A. Sakuda, M. Tatsumisago, <i>Nat. Commun.</i> 2019, 10, 5266). This exceptional conductivity arises primarily from the introduction of sodium ion vacancies (V′<sub>Na</sub>) via supervalent substitution of Sb<sup>5+</sup> with W<sup>6+</sup>. Using low-temperature impedance spectroscopy down to <i>T</i> = 113 K (−160 °C), we demonstrate that previously reported room temperature conductivities of Na<sub>2.9</sub>Sb<sub>0.9</sub>W<sub>0.1</sub>S<sub>4</sub> are influenced by grain boundary resistances, which can only be effectively separated from the total conductivity at such low temperatures. Our results indicate that the pure Na<sup>+</sup> bulk conductivity can reach 96 mS cm<sup>–1</sup> (D<sub>σ</sub> = 0.98 × 10<sup>–10</sup> m<sup>2</sup> s<sup>–1</sup>) at room temperature, as extrapolated from accurately measured low-temperature data (1.8 mS cm<sup>–1</sup> at –130 °C). Our study suggests that further minimizing detrimental grain boundary effects enables extraordinarily fast long-range Na<sup>+</sup> ion transport in this sulfide.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c05842\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c05842","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
w掺杂Na3SbS4是一种很有前途的全固态钠电池固体电解质,其钠离子电导率高于30 mS cm-1 (a . Hayashi, N. Masuzawa, S. Yubuchi, F. Tsuji, C. Hotehama, a . Sakuda, M. Tatsumisago, Nat. comm . 2019, 10, 5266)。这种特殊的导电性主要来自于通过用W6+取代Sb5+而引入的钠离子空位(V 'Na)。利用低至T = 113 K(- 160℃)的低温阻抗谱,我们证明了之前报道的Na2.9Sb0.9W0.1S4的室温电导率受到晶界电阻的影响,而晶界电阻只有在如此低的温度下才能有效地与总电导率分离。我们的研究结果表明,根据精确测量的低温数据(-130℃时1.8 mS cm-1)推断,在室温下,纯Na+的体电导率可以达到96 mS cm-1 (Dσ = 0.98 × 10-10 m2 s-1)。我们的研究表明,进一步减少有害的晶界效应可以使这种硫化物中的Na+离子传输异常快速。
Unveiling Ultra-High Ionic Conductivity in W-Doped Na3SbS4: Grain Boundary Effects and Pure Bulk Transport
W-doped Na3SbS4 is a promising solid electrolyte for all-solid-state sodium batteries, exhibiting a sodium (Na+) ionic conductivity higher than 30 mS cm–1 (A. Hayashi, N. Masuzawa, S. Yubuchi, F. Tsuji, C. Hotehama, A. Sakuda, M. Tatsumisago, Nat. Commun. 2019, 10, 5266). This exceptional conductivity arises primarily from the introduction of sodium ion vacancies (V′Na) via supervalent substitution of Sb5+ with W6+. Using low-temperature impedance spectroscopy down to T = 113 K (−160 °C), we demonstrate that previously reported room temperature conductivities of Na2.9Sb0.9W0.1S4 are influenced by grain boundary resistances, which can only be effectively separated from the total conductivity at such low temperatures. Our results indicate that the pure Na+ bulk conductivity can reach 96 mS cm–1 (Dσ = 0.98 × 10–10 m2 s–1) at room temperature, as extrapolated from accurately measured low-temperature data (1.8 mS cm–1 at –130 °C). Our study suggests that further minimizing detrimental grain boundary effects enables extraordinarily fast long-range Na+ ion transport in this sulfide.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.