利用OCR和HTR云服务实现历史工厂名称的数据动员。

Jawad Sadek, Andreas Vlachidis, Victoria Pickering, Marco Humbel, Daniele Metilli, Mark Carine, Julianne Nyhan
{"title":"利用OCR和HTR云服务实现历史工厂名称的数据动员。","authors":"Jawad Sadek, Andreas Vlachidis, Victoria Pickering, Marco Humbel, Daniele Metilli, Mark Carine, Julianne Nyhan","doi":"10.1007/s42803-024-00091-4","DOIUrl":null,"url":null,"abstract":"<p><p>We present our solution to the problem of how to mobilise (that is, extract and enrich) digital data from the analogue, printed book version Sir Hans Sloane's copy of John Ray's Historia Plantarum, to create the first searchable facility of its kind to the plants contained in the Sloane Herbarium, housed in the National History Museum UK. The data mobilisation workflow presented here enables the automatic detection of printed and handwritten marginalia text and annotations in Sir Hans Sloane\" personal copy of John Ray's Historia Plantarum. The rationale of adopting AWS Amazon's Textract service and the development of a specialised information extraction workflow for mobilising printed text and handwritten annotations is discussed. Testing of our workflow demonstrates the need for human-checking of outputs to ensure the accuracy of a large set of structured data comprising 7600 plant names and 4540 handwritten marginalia annotation. The links we have created serve as the first digital index to Sloan's Herbarium, a unique development in the longer analogue and digital format-history of these resources.</p>","PeriodicalId":91018,"journal":{"name":"International journal of digital humanities","volume":"6 3","pages":"237-261"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106164/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging OCR and HTR cloud services towards data mobilisation of historical plant names.\",\"authors\":\"Jawad Sadek, Andreas Vlachidis, Victoria Pickering, Marco Humbel, Daniele Metilli, Mark Carine, Julianne Nyhan\",\"doi\":\"10.1007/s42803-024-00091-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present our solution to the problem of how to mobilise (that is, extract and enrich) digital data from the analogue, printed book version Sir Hans Sloane's copy of John Ray's Historia Plantarum, to create the first searchable facility of its kind to the plants contained in the Sloane Herbarium, housed in the National History Museum UK. The data mobilisation workflow presented here enables the automatic detection of printed and handwritten marginalia text and annotations in Sir Hans Sloane\\\" personal copy of John Ray's Historia Plantarum. The rationale of adopting AWS Amazon's Textract service and the development of a specialised information extraction workflow for mobilising printed text and handwritten annotations is discussed. Testing of our workflow demonstrates the need for human-checking of outputs to ensure the accuracy of a large set of structured data comprising 7600 plant names and 4540 handwritten marginalia annotation. The links we have created serve as the first digital index to Sloan's Herbarium, a unique development in the longer analogue and digital format-history of these resources.</p>\",\"PeriodicalId\":91018,\"journal\":{\"name\":\"International journal of digital humanities\",\"volume\":\"6 3\",\"pages\":\"237-261\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106164/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of digital humanities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42803-024-00091-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of digital humanities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42803-024-00091-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了我们的解决方案,如何动员(即提取和丰富)数字数据的模拟,印刷书籍版本的汉斯·斯隆爵士的副本约翰·雷的植物历史,以创建第一个可搜索的设施,包含在斯隆标本馆的植物,安置在英国国家历史博物馆。这里展示的数据移动工作流程可以自动检测汉斯·斯隆爵士“约翰·雷的《植物历史》的私人副本”中的印刷和手写旁注文本和注释。讨论了采用AWS亚马逊的文本服务的基本原理,以及为动员印刷文本和手写注释而开发的专门信息提取工作流。对我们工作流程的测试表明,需要人工检查输出,以确保包含7600个植物名称和4540个手写旁注注释的大型结构化数据集的准确性。我们创建的链接是斯隆植物标本馆的第一个数字索引,这是这些资源长期模拟和数字格式历史的独特发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging OCR and HTR cloud services towards data mobilisation of historical plant names.

We present our solution to the problem of how to mobilise (that is, extract and enrich) digital data from the analogue, printed book version Sir Hans Sloane's copy of John Ray's Historia Plantarum, to create the first searchable facility of its kind to the plants contained in the Sloane Herbarium, housed in the National History Museum UK. The data mobilisation workflow presented here enables the automatic detection of printed and handwritten marginalia text and annotations in Sir Hans Sloane" personal copy of John Ray's Historia Plantarum. The rationale of adopting AWS Amazon's Textract service and the development of a specialised information extraction workflow for mobilising printed text and handwritten annotations is discussed. Testing of our workflow demonstrates the need for human-checking of outputs to ensure the accuracy of a large set of structured data comprising 7600 plant names and 4540 handwritten marginalia annotation. The links we have created serve as the first digital index to Sloan's Herbarium, a unique development in the longer analogue and digital format-history of these resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信