一种评估分子机制如何影响大规模大脑活动的计算方法。

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nature computational science Pub Date : 2025-05-01 Epub Date: 2025-05-28 DOI:10.1038/s43588-025-00796-8
Maria Sacha, Federico Tesler, Rodrigo Cofre, Alain Destexhe
{"title":"一种评估分子机制如何影响大规模大脑活动的计算方法。","authors":"Maria Sacha, Federico Tesler, Rodrigo Cofre, Alain Destexhe","doi":"10.1038/s43588-025-00796-8","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing the impact of pharmaceutical compounds on brain activity is a critical issue in contemporary neuroscience. Currently, no systematic approach exists for evaluating these effects in whole-brain models, which typically focus on macroscopic phenomena, while pharmaceutical interventions operate at the molecular scale. Here we address this issue by presenting a computational approach for brain simulations using biophysically grounded mean-field models that integrate membrane conductances and synaptic receptors, showcased in the example of anesthesia. We show that anesthetics targeting GABA<sub>A</sub> and NMDA receptors can switch brain activity to generalized slow-wave patterns, as observed experimentally in deep anesthesia. To validate our models, we demonstrate that these slow-wave states exhibit reduced responsiveness to external stimuli and functional connectivity constrained by anatomical connectivity, mirroring experimental findings in anesthetized states across species. Our approach, founded on mean-field models that incorporate molecular realism, provides a robust framework for understanding how molecular-level drug actions impact whole-brain dynamics.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 5","pages":"405-417"},"PeriodicalIF":18.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119344/pdf/","citationCount":"0","resultStr":"{\"title\":\"A computational approach to evaluate how molecular mechanisms impact large-scale brain activity.\",\"authors\":\"Maria Sacha, Federico Tesler, Rodrigo Cofre, Alain Destexhe\",\"doi\":\"10.1038/s43588-025-00796-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Assessing the impact of pharmaceutical compounds on brain activity is a critical issue in contemporary neuroscience. Currently, no systematic approach exists for evaluating these effects in whole-brain models, which typically focus on macroscopic phenomena, while pharmaceutical interventions operate at the molecular scale. Here we address this issue by presenting a computational approach for brain simulations using biophysically grounded mean-field models that integrate membrane conductances and synaptic receptors, showcased in the example of anesthesia. We show that anesthetics targeting GABA<sub>A</sub> and NMDA receptors can switch brain activity to generalized slow-wave patterns, as observed experimentally in deep anesthesia. To validate our models, we demonstrate that these slow-wave states exhibit reduced responsiveness to external stimuli and functional connectivity constrained by anatomical connectivity, mirroring experimental findings in anesthetized states across species. Our approach, founded on mean-field models that incorporate molecular realism, provides a robust framework for understanding how molecular-level drug actions impact whole-brain dynamics.</p>\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"5 5\",\"pages\":\"405-417\"},\"PeriodicalIF\":18.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119344/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43588-025-00796-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00796-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

评估药物化合物对大脑活动的影响是当代神经科学中的一个关键问题。目前,还没有系统的方法在全脑模型中评估这些效应,这些模型通常关注宏观现象,而药物干预在分子尺度上起作用。在这里,我们通过提出一种基于生物物理的平均场模型的脑模拟计算方法来解决这个问题,该模型整合了膜电导和突触受体,在麻醉的例子中得到了展示。我们表明,在深度麻醉实验中观察到,靶向GABAA和NMDA受体的麻醉剂可以将大脑活动转换为广义慢波模式。为了验证我们的模型,我们证明了这些慢波状态对外部刺激的反应性降低,功能连接受到解剖连接的限制,反映了跨物种麻醉状态的实验结果。我们的方法建立在结合分子现实主义的平均场模型上,为理解分子水平药物作用如何影响全脑动力学提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A computational approach to evaluate how molecular mechanisms impact large-scale brain activity.

Assessing the impact of pharmaceutical compounds on brain activity is a critical issue in contemporary neuroscience. Currently, no systematic approach exists for evaluating these effects in whole-brain models, which typically focus on macroscopic phenomena, while pharmaceutical interventions operate at the molecular scale. Here we address this issue by presenting a computational approach for brain simulations using biophysically grounded mean-field models that integrate membrane conductances and synaptic receptors, showcased in the example of anesthesia. We show that anesthetics targeting GABAA and NMDA receptors can switch brain activity to generalized slow-wave patterns, as observed experimentally in deep anesthesia. To validate our models, we demonstrate that these slow-wave states exhibit reduced responsiveness to external stimuli and functional connectivity constrained by anatomical connectivity, mirroring experimental findings in anesthetized states across species. Our approach, founded on mean-field models that incorporate molecular realism, provides a robust framework for understanding how molecular-level drug actions impact whole-brain dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信