应用于生物变异评估的数据科学。

IF 1.1 Q4 MEDICAL LABORATORY TECHNOLOGY
Advances in laboratory medicine Pub Date : 2025-04-01 eCollection Date: 2025-06-01 DOI:10.1515/almed-2025-0042
Fernando Marques-Garcia, Ana Nieto-Librero, Nerea Gonzalez-García, Xavier Tejedor-Ganduxé, Cristina Martinez-Bravo
{"title":"应用于生物变异评估的数据科学。","authors":"Fernando Marques-Garcia, Ana Nieto-Librero, Nerea Gonzalez-García, Xavier Tejedor-Ganduxé, Cristina Martinez-Bravo","doi":"10.1515/almed-2025-0042","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Data science is an umbrella term encompassing a set of tools and processes that make it possible to extract new information from structured or unstructured databases. This scientific discipline is gaining relevance in healthcare. In the clinical laboratory, the multiple applications of data science include the development of algorithms for obtaining population-based reference intervals or biological variation (BV) estimates. These algorithms contribute to overcoming the drawbacks of traditional or direct methods.</p><p><strong>Content: </strong>A review was performed of the state-of-the-art in algorithm-based methods for obtaining BV estimates using Real-World Data (RWD) in the field of data science.</p><p><strong>Summary: </strong>A description is provided of the structure of the algorithms currently available for obtaining BV estimates based on the scientific evidence available. An overview is provided of the advantages and drawbacks of direct methods.</p><p><strong>Outlook: </strong>The use of RWD to obtain BV estimates is a novel discipline with a considerable potential for improving our understanding of BV.</p>","PeriodicalId":72097,"journal":{"name":"Advances in laboratory medicine","volume":"6 2","pages":"154-159"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107409/pdf/","citationCount":"0","resultStr":"{\"title\":\"Data science applied to the assessment of biological variation estimates.\",\"authors\":\"Fernando Marques-Garcia, Ana Nieto-Librero, Nerea Gonzalez-García, Xavier Tejedor-Ganduxé, Cristina Martinez-Bravo\",\"doi\":\"10.1515/almed-2025-0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Data science is an umbrella term encompassing a set of tools and processes that make it possible to extract new information from structured or unstructured databases. This scientific discipline is gaining relevance in healthcare. In the clinical laboratory, the multiple applications of data science include the development of algorithms for obtaining population-based reference intervals or biological variation (BV) estimates. These algorithms contribute to overcoming the drawbacks of traditional or direct methods.</p><p><strong>Content: </strong>A review was performed of the state-of-the-art in algorithm-based methods for obtaining BV estimates using Real-World Data (RWD) in the field of data science.</p><p><strong>Summary: </strong>A description is provided of the structure of the algorithms currently available for obtaining BV estimates based on the scientific evidence available. An overview is provided of the advantages and drawbacks of direct methods.</p><p><strong>Outlook: </strong>The use of RWD to obtain BV estimates is a novel discipline with a considerable potential for improving our understanding of BV.</p>\",\"PeriodicalId\":72097,\"journal\":{\"name\":\"Advances in laboratory medicine\",\"volume\":\"6 2\",\"pages\":\"154-159\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107409/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in laboratory medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/almed-2025-0042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in laboratory medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/almed-2025-0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

简介:数据科学是一个总称,包含了一组工具和流程,这些工具和流程使从结构化或非结构化数据库中提取新信息成为可能。这一科学学科在医疗保健领域的相关性越来越强。在临床实验室中,数据科学的多种应用包括开发用于获得基于人群的参考区间或生物变异(BV)估计的算法。这些算法有助于克服传统方法或直接方法的缺点。内容:对数据科学领域使用真实世界数据(RWD)获得BV估计的最先进的基于算法的方法进行了审查。摘要:根据现有的科学证据,描述了目前可用于获得BV估计的算法结构。概述了直接法的优点和缺点。展望:利用RWD获得BV估计是一门新兴学科,对于提高我们对BV的理解具有相当大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data science applied to the assessment of biological variation estimates.

Introduction: Data science is an umbrella term encompassing a set of tools and processes that make it possible to extract new information from structured or unstructured databases. This scientific discipline is gaining relevance in healthcare. In the clinical laboratory, the multiple applications of data science include the development of algorithms for obtaining population-based reference intervals or biological variation (BV) estimates. These algorithms contribute to overcoming the drawbacks of traditional or direct methods.

Content: A review was performed of the state-of-the-art in algorithm-based methods for obtaining BV estimates using Real-World Data (RWD) in the field of data science.

Summary: A description is provided of the structure of the algorithms currently available for obtaining BV estimates based on the scientific evidence available. An overview is provided of the advantages and drawbacks of direct methods.

Outlook: The use of RWD to obtain BV estimates is a novel discipline with a considerable potential for improving our understanding of BV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信