物联网入侵检测的联邦学习框架,使用标签转换器和自然启发的超参数优化。

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frontiers in Big Data Pub Date : 2025-05-14 eCollection Date: 2025-01-01 DOI:10.3389/fdata.2025.1526480
Mohamed Abd Elaziz, Ibrahim A Fares, Abdelghani Dahou, Mansour Shrahili
{"title":"物联网入侵检测的联邦学习框架,使用标签转换器和自然启发的超参数优化。","authors":"Mohamed Abd Elaziz, Ibrahim A Fares, Abdelghani Dahou, Mansour Shrahili","doi":"10.3389/fdata.2025.1526480","DOIUrl":null,"url":null,"abstract":"<p><p>Intrusion detection has been of prime concern in the Internet of Things (IoT) environment due to the rapid increase in cyber threats. Majority of traditional intrusion detection systems (IDSs) rely on centralized models, raising significant privacy concerns. Federated learning (FL) offers a decentralized alternative; however, many existing FL-based IDS frameworks suffer from poor performance due to suboptimal model architectures and ineffective hyperparameter selection. To address these challenges, this paper introduces a novel trust-centric FL framework based on the tab transformer (TTF) model for IDS. We enhance the Tab model through an optimization process, utilizing a hyperparameter tuning algorithm inspired by the nature-based electric eel foraging optimization (EEFO) algorithm. The goal of the developed framework is to improve the detection of IDS without using centralized data to preserve privacy. Whereas it enhances the processing and detection capability of huge amounts of data generated from IoT devices. Our framework is tested on three IoT datasets: N-BaIoT, UNSW-NB15, and CICIoT2023 to ensure the model's performance. Experimental results show that the proposed framework significantly exceeds traditional methods in terms of accuracy, precision, and recall. The results presented in this study confirm the effectiveness and superior performance of the proposed FL-based IDS framework.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"8 ","pages":"1526480"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116512/pdf/","citationCount":"0","resultStr":"{\"title\":\"Federated learning framework for IoT intrusion detection using tab transformer and nature-inspired hyperparameter optimization.\",\"authors\":\"Mohamed Abd Elaziz, Ibrahim A Fares, Abdelghani Dahou, Mansour Shrahili\",\"doi\":\"10.3389/fdata.2025.1526480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intrusion detection has been of prime concern in the Internet of Things (IoT) environment due to the rapid increase in cyber threats. Majority of traditional intrusion detection systems (IDSs) rely on centralized models, raising significant privacy concerns. Federated learning (FL) offers a decentralized alternative; however, many existing FL-based IDS frameworks suffer from poor performance due to suboptimal model architectures and ineffective hyperparameter selection. To address these challenges, this paper introduces a novel trust-centric FL framework based on the tab transformer (TTF) model for IDS. We enhance the Tab model through an optimization process, utilizing a hyperparameter tuning algorithm inspired by the nature-based electric eel foraging optimization (EEFO) algorithm. The goal of the developed framework is to improve the detection of IDS without using centralized data to preserve privacy. Whereas it enhances the processing and detection capability of huge amounts of data generated from IoT devices. Our framework is tested on three IoT datasets: N-BaIoT, UNSW-NB15, and CICIoT2023 to ensure the model's performance. Experimental results show that the proposed framework significantly exceeds traditional methods in terms of accuracy, precision, and recall. The results presented in this study confirm the effectiveness and superior performance of the proposed FL-based IDS framework.</p>\",\"PeriodicalId\":52859,\"journal\":{\"name\":\"Frontiers in Big Data\",\"volume\":\"8 \",\"pages\":\"1526480\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116512/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdata.2025.1526480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2025.1526480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于网络威胁的快速增加,入侵检测已经成为物联网(IoT)环境中最受关注的问题。大多数传统的入侵检测系统(ids)依赖于集中式模型,这引起了严重的隐私问题。联邦学习(FL)提供了一种分散的替代方案;然而,许多现有的基于fl的IDS框架由于次优模型架构和无效的超参数选择而导致性能不佳。为了解决这些挑战,本文介绍了一种新的基于标签转换器(TTF)模型的IDS以信任为中心的FL框架。我们利用基于自然的电鳗觅食优化(EEFO)算法的超参数调谐算法,通过优化过程增强了Tab模型。开发的框架的目标是在不使用集中数据保护隐私的情况下改进对IDS的检测。然而,它增强了对物联网设备产生的大量数据的处理和检测能力。我们的框架在三个物联网数据集上进行了测试:N-BaIoT, UNSW-NB15和CICIoT2023,以确保模型的性能。实验结果表明,该框架在准确率、精密度和查全率方面明显优于传统方法。本研究的结果证实了所提出的基于fl的IDS框架的有效性和优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Federated learning framework for IoT intrusion detection using tab transformer and nature-inspired hyperparameter optimization.

Intrusion detection has been of prime concern in the Internet of Things (IoT) environment due to the rapid increase in cyber threats. Majority of traditional intrusion detection systems (IDSs) rely on centralized models, raising significant privacy concerns. Federated learning (FL) offers a decentralized alternative; however, many existing FL-based IDS frameworks suffer from poor performance due to suboptimal model architectures and ineffective hyperparameter selection. To address these challenges, this paper introduces a novel trust-centric FL framework based on the tab transformer (TTF) model for IDS. We enhance the Tab model through an optimization process, utilizing a hyperparameter tuning algorithm inspired by the nature-based electric eel foraging optimization (EEFO) algorithm. The goal of the developed framework is to improve the detection of IDS without using centralized data to preserve privacy. Whereas it enhances the processing and detection capability of huge amounts of data generated from IoT devices. Our framework is tested on three IoT datasets: N-BaIoT, UNSW-NB15, and CICIoT2023 to ensure the model's performance. Experimental results show that the proposed framework significantly exceeds traditional methods in terms of accuracy, precision, and recall. The results presented in this study confirm the effectiveness and superior performance of the proposed FL-based IDS framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信