基于上下文的匹配分子对分析确定了减少CYP1A2抑制的结构转化。

IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Janvi A Raut, Vaibhav A Dixit
{"title":"基于上下文的匹配分子对分析确定了减少CYP1A2抑制的结构转化。","authors":"Janvi A Raut, Vaibhav A Dixit","doi":"10.1039/d4md01012d","DOIUrl":null,"url":null,"abstract":"<p><p>Cytochrome P450 1A2 (CYP1A2) metabolizes ∼10-15% of FDA-approved drugs. Available quantitative structure-activity relationship (QSAR) and machine learning methods offer little design insights to reduce CYP1A2 inhibition. We performed matched molecular pair analysis (MMPA) on the CYP1A2 inhibition dataset (ChEMBL3356) and identified key structural transformations. A chemical context-based analysis was performed using Kramer's method to tackle the limitations of the global MMPA. The global MMPA agreed with earlier QSAR studies (influence of H to F, Me, OMe, and OH transformations). Our results show that the effect of these transformations depends on the local chemical environment. The H to Me transformation reduced the inhibition in three pharmacologically important scaffolds (<i>e.g.</i>, indanylpyridine). Structure-based analysis (docking) showed that the interaction of the heteroatoms with Heme-Fe is influenced by useful transformations. Overall, this work presents the first context-based analysis of the CYP1A2 dataset and offers novel medicinal chemistry insights useful for lead optimization.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107391/pdf/","citationCount":"0","resultStr":"{\"title\":\"A context-based matched molecular pair analysis identifies structural transformations that reduce CYP1A2 inhibition.\",\"authors\":\"Janvi A Raut, Vaibhav A Dixit\",\"doi\":\"10.1039/d4md01012d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cytochrome P450 1A2 (CYP1A2) metabolizes ∼10-15% of FDA-approved drugs. Available quantitative structure-activity relationship (QSAR) and machine learning methods offer little design insights to reduce CYP1A2 inhibition. We performed matched molecular pair analysis (MMPA) on the CYP1A2 inhibition dataset (ChEMBL3356) and identified key structural transformations. A chemical context-based analysis was performed using Kramer's method to tackle the limitations of the global MMPA. The global MMPA agreed with earlier QSAR studies (influence of H to F, Me, OMe, and OH transformations). Our results show that the effect of these transformations depends on the local chemical environment. The H to Me transformation reduced the inhibition in three pharmacologically important scaffolds (<i>e.g.</i>, indanylpyridine). Structure-based analysis (docking) showed that the interaction of the heteroatoms with Heme-Fe is influenced by useful transformations. Overall, this work presents the first context-based analysis of the CYP1A2 dataset and offers novel medicinal chemistry insights useful for lead optimization.</p>\",\"PeriodicalId\":21462,\"journal\":{\"name\":\"RSC medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107391/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1039/d4md01012d\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d4md01012d","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞色素P450 1A2 (CYP1A2)代谢约10-15%的fda批准药物。现有的定量构效关系(QSAR)和机器学习方法在减少CYP1A2抑制方面提供的设计见解很少。我们对CYP1A2抑制数据集(ChEMBL3356)进行了匹配分子对分析(MMPA),并确定了关键的结构转化。采用Kramer方法进行化学环境分析,以解决全球MMPA的局限性。全球MMPA与早期QSAR研究一致(H到F、Me、OMe和OH转化的影响)。我们的研究结果表明,这些转化的效果取决于当地的化学环境。H到Me的转化降低了对三种重要的药理学支架的抑制作用(例如,indanyylpyridine)。基于结构的分析(对接)表明,杂原子与血红素-铁的相互作用受到有用转化的影响。总的来说,这项工作提出了CYP1A2数据集的第一个基于上下文的分析,并为铅优化提供了新的药物化学见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A context-based matched molecular pair analysis identifies structural transformations that reduce CYP1A2 inhibition.

Cytochrome P450 1A2 (CYP1A2) metabolizes ∼10-15% of FDA-approved drugs. Available quantitative structure-activity relationship (QSAR) and machine learning methods offer little design insights to reduce CYP1A2 inhibition. We performed matched molecular pair analysis (MMPA) on the CYP1A2 inhibition dataset (ChEMBL3356) and identified key structural transformations. A chemical context-based analysis was performed using Kramer's method to tackle the limitations of the global MMPA. The global MMPA agreed with earlier QSAR studies (influence of H to F, Me, OMe, and OH transformations). Our results show that the effect of these transformations depends on the local chemical environment. The H to Me transformation reduced the inhibition in three pharmacologically important scaffolds (e.g., indanylpyridine). Structure-based analysis (docking) showed that the interaction of the heteroatoms with Heme-Fe is influenced by useful transformations. Overall, this work presents the first context-based analysis of the CYP1A2 dataset and offers novel medicinal chemistry insights useful for lead optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
2.40%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信