{"title":"释放肽核酸5 (PNA5)在神经系统疾病中的神经保护潜力:分子机制到治疗方法","authors":"Pratyush Porel, Garry Hunjan, Navpreet Kaur, Vipul Sharma, Manpreet Kaur, Yukti Mittal, Ramandeep Kaur, Khadga Raj Aran","doi":"10.1007/s11011-025-01629-3","DOIUrl":null,"url":null,"abstract":"<p><p>Peptide nucleic acids (PNAs) are synthetic nucleic acid analogues offering distinct structural and functional advantages over conventional RNA and DNA, positioning them as powerful molecules in molecular biology. Recently, PNAs have gained significant attention for their potential in the prevention and management of neurological diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury (TBI), spinal cord injury (SCI), depression, and anxiety. PNA5, a specific PNA variant, is highly expressed in neocortical association regions, particularly in primates, and plays a critical role in high-level cognitive functions such as reasoning, decision-making, and problem-solving. It can form stable, sequence-specific hybridizations with nucleic acids, resist nuclease degradation, and efficiently cross cellular membranes, making them ideal candidates for targeting disease-related genes in the brain. PNA5 has shown neuroprotective properties by improving cognitive function, reducing neuroinflammation, and preserving the integrity of the blood-brain barrier (BBB). Additionally, it supports critical processes such as neural migration, axon guidance, and synaptogenesis, which are vital for maintaining proper brain function. This review explores the mechanisms by which PNAs, particularly PNA5, exert therapeutic effects in neurological disorders. It highlights their role in gene modulation, protein regulation, and potential strategies for enhancing PNA delivery to the central nervous system (CNS) and its related disorders.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 5","pages":"213"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the neuroprotective potential of peptide nucleic acids 5 (PNA5) in neurological diseases: molecular mechanisms to therapeutic approaches.\",\"authors\":\"Pratyush Porel, Garry Hunjan, Navpreet Kaur, Vipul Sharma, Manpreet Kaur, Yukti Mittal, Ramandeep Kaur, Khadga Raj Aran\",\"doi\":\"10.1007/s11011-025-01629-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peptide nucleic acids (PNAs) are synthetic nucleic acid analogues offering distinct structural and functional advantages over conventional RNA and DNA, positioning them as powerful molecules in molecular biology. Recently, PNAs have gained significant attention for their potential in the prevention and management of neurological diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury (TBI), spinal cord injury (SCI), depression, and anxiety. PNA5, a specific PNA variant, is highly expressed in neocortical association regions, particularly in primates, and plays a critical role in high-level cognitive functions such as reasoning, decision-making, and problem-solving. It can form stable, sequence-specific hybridizations with nucleic acids, resist nuclease degradation, and efficiently cross cellular membranes, making them ideal candidates for targeting disease-related genes in the brain. PNA5 has shown neuroprotective properties by improving cognitive function, reducing neuroinflammation, and preserving the integrity of the blood-brain barrier (BBB). Additionally, it supports critical processes such as neural migration, axon guidance, and synaptogenesis, which are vital for maintaining proper brain function. This review explores the mechanisms by which PNAs, particularly PNA5, exert therapeutic effects in neurological disorders. It highlights their role in gene modulation, protein regulation, and potential strategies for enhancing PNA delivery to the central nervous system (CNS) and its related disorders.</p>\",\"PeriodicalId\":18685,\"journal\":{\"name\":\"Metabolic brain disease\",\"volume\":\"40 5\",\"pages\":\"213\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic brain disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11011-025-01629-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01629-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Unlocking the neuroprotective potential of peptide nucleic acids 5 (PNA5) in neurological diseases: molecular mechanisms to therapeutic approaches.
Peptide nucleic acids (PNAs) are synthetic nucleic acid analogues offering distinct structural and functional advantages over conventional RNA and DNA, positioning them as powerful molecules in molecular biology. Recently, PNAs have gained significant attention for their potential in the prevention and management of neurological diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury (TBI), spinal cord injury (SCI), depression, and anxiety. PNA5, a specific PNA variant, is highly expressed in neocortical association regions, particularly in primates, and plays a critical role in high-level cognitive functions such as reasoning, decision-making, and problem-solving. It can form stable, sequence-specific hybridizations with nucleic acids, resist nuclease degradation, and efficiently cross cellular membranes, making them ideal candidates for targeting disease-related genes in the brain. PNA5 has shown neuroprotective properties by improving cognitive function, reducing neuroinflammation, and preserving the integrity of the blood-brain barrier (BBB). Additionally, it supports critical processes such as neural migration, axon guidance, and synaptogenesis, which are vital for maintaining proper brain function. This review explores the mechanisms by which PNAs, particularly PNA5, exert therapeutic effects in neurological disorders. It highlights their role in gene modulation, protein regulation, and potential strategies for enhancing PNA delivery to the central nervous system (CNS) and its related disorders.
期刊介绍:
Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.