Caitlin Greenland-Bews, Sonal Shah, Morine Achieng, Emilie S Badoum, Yaya Bah, Hellen C Barsosio, Helena Brazal-Monzó, Jennifer Canizales, Anna Drabko, Alice J Fraser, Luke Hannan, Sheikh Jarju, Jean-Moise Kaboré, Mariama A Kujabi, Cristina Leggio, Maia Lesosky, Jarra Manneh, Tegwen Marlais, Julian Matthewman, Issa Nebié, Eric Onyango, Alphonse Ouedraogo, Kephas Otieno, Samuel S Serme, Sodiomon Sirima, Ben Soulama, Brian Tangara, Alfred Tiono, William Wu, Emily R Adams, Abdul Karim Sesay, Chris Drakeley, Feiko O Ter Kuile, Issiaka Soulama, Simon Kariuki, David J Allen, Thomas Edwards
{"title":"高分辨率熔体测定法在布基纳法索和肯尼亚监测SARS-CoV-2变异的应用","authors":"Caitlin Greenland-Bews, Sonal Shah, Morine Achieng, Emilie S Badoum, Yaya Bah, Hellen C Barsosio, Helena Brazal-Monzó, Jennifer Canizales, Anna Drabko, Alice J Fraser, Luke Hannan, Sheikh Jarju, Jean-Moise Kaboré, Mariama A Kujabi, Cristina Leggio, Maia Lesosky, Jarra Manneh, Tegwen Marlais, Julian Matthewman, Issa Nebié, Eric Onyango, Alphonse Ouedraogo, Kephas Otieno, Samuel S Serme, Sodiomon Sirima, Ben Soulama, Brian Tangara, Alfred Tiono, William Wu, Emily R Adams, Abdul Karim Sesay, Chris Drakeley, Feiko O Ter Kuile, Issiaka Soulama, Simon Kariuki, David J Allen, Thomas Edwards","doi":"10.1128/msphere.00027-25","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid emergence and global dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlighted a need for robust, adaptable surveillance systems. However, financial and infrastructure requirements for whole-genome sequencing mean most surveillance data have come from higher-resource geographies, despite unprecedented investment in sequencing in low- and middle-income countries (LMICs). Consequently, the molecular epidemiology of SARS-CoV-2 in some LMICs is limited, and there is a need for more cost-accessible technologies to help close data gaps for surveillance of SARS-CoV-2 variants. To address this, we have developed two high-resolution melt (HRM) curve assays that target variant-defining mutations in the SARS-CoV-2 genome, which give unique signature profiles that define different SARS-CoV-2 variants of concern (VOCs). Extracted RNA from SARS-CoV-2-positive samples collected from 205 participants (112 in Burkina Faso, 93 in Kenya) enrolled in the MALCOV study (Malaria as a Risk Factor for COVID-19) between February 2021 and February 2022 were analyzed using our optimized HRM assays. With next-generation sequencing on Oxford Nanopore MinION as a reference, two HRM assays, HRM-VOC-1 and HRM-VOC-2, demonstrated sensitivity/specificity of 100%/99.29% and 92.86%/99.39%, respectively, for detecting Alpha, 90.08%/100% and 92.31%/100% for Delta, and 93.75%/100% and 100%/99.38% for Omicron BA.1. The assays described here provide a lower-cost approach to conducting molecular epidemiology, capable of high-throughput testing. We successfully scaled up the HRM-VOC-2 assay to screen a total of 506 samples from which we were able to show the replacement of Alpha with the introduction of Delta and the replacement of Delta by the Omicron variant in this community in Kisumu, Kenya.IMPORTANCEThe rapid evolution of the severe acute respiratory syndrome coronavirus 2 variants of concern (VOCs) demonstrated the need for accessible surveillance tools so all communities can conduct viral surveillance. Sequencing, the gold standard, is still a largely inaccessible methodology in low-resource settings. Here, we present a quick, low-cost tool to screen for the common VOCs, designed to support surveillance efforts in low-resource settings. This tool was used to screen samples from Burkina Faso and Western Kenya throughout the pandemic. We show through comparison to sequencing that our assay can generate highly similar data on the different variants circulating in a population, therefore showing the effectiveness of our tool. While not a replacement for sequencing, we present a method of screening and prioritizing samples for further investigation and reduce overburdening sequencing capacity. Our findings provide insight into one potential tool that could be further applied to pathogen screening in the absence of robust sequencing infrastructure.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0002725"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188703/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of a high-resolution melt assay for monitoring SARS-CoV-2 variants in Burkina Faso and Kenya.\",\"authors\":\"Caitlin Greenland-Bews, Sonal Shah, Morine Achieng, Emilie S Badoum, Yaya Bah, Hellen C Barsosio, Helena Brazal-Monzó, Jennifer Canizales, Anna Drabko, Alice J Fraser, Luke Hannan, Sheikh Jarju, Jean-Moise Kaboré, Mariama A Kujabi, Cristina Leggio, Maia Lesosky, Jarra Manneh, Tegwen Marlais, Julian Matthewman, Issa Nebié, Eric Onyango, Alphonse Ouedraogo, Kephas Otieno, Samuel S Serme, Sodiomon Sirima, Ben Soulama, Brian Tangara, Alfred Tiono, William Wu, Emily R Adams, Abdul Karim Sesay, Chris Drakeley, Feiko O Ter Kuile, Issiaka Soulama, Simon Kariuki, David J Allen, Thomas Edwards\",\"doi\":\"10.1128/msphere.00027-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid emergence and global dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlighted a need for robust, adaptable surveillance systems. However, financial and infrastructure requirements for whole-genome sequencing mean most surveillance data have come from higher-resource geographies, despite unprecedented investment in sequencing in low- and middle-income countries (LMICs). Consequently, the molecular epidemiology of SARS-CoV-2 in some LMICs is limited, and there is a need for more cost-accessible technologies to help close data gaps for surveillance of SARS-CoV-2 variants. To address this, we have developed two high-resolution melt (HRM) curve assays that target variant-defining mutations in the SARS-CoV-2 genome, which give unique signature profiles that define different SARS-CoV-2 variants of concern (VOCs). Extracted RNA from SARS-CoV-2-positive samples collected from 205 participants (112 in Burkina Faso, 93 in Kenya) enrolled in the MALCOV study (Malaria as a Risk Factor for COVID-19) between February 2021 and February 2022 were analyzed using our optimized HRM assays. With next-generation sequencing on Oxford Nanopore MinION as a reference, two HRM assays, HRM-VOC-1 and HRM-VOC-2, demonstrated sensitivity/specificity of 100%/99.29% and 92.86%/99.39%, respectively, for detecting Alpha, 90.08%/100% and 92.31%/100% for Delta, and 93.75%/100% and 100%/99.38% for Omicron BA.1. The assays described here provide a lower-cost approach to conducting molecular epidemiology, capable of high-throughput testing. We successfully scaled up the HRM-VOC-2 assay to screen a total of 506 samples from which we were able to show the replacement of Alpha with the introduction of Delta and the replacement of Delta by the Omicron variant in this community in Kisumu, Kenya.IMPORTANCEThe rapid evolution of the severe acute respiratory syndrome coronavirus 2 variants of concern (VOCs) demonstrated the need for accessible surveillance tools so all communities can conduct viral surveillance. Sequencing, the gold standard, is still a largely inaccessible methodology in low-resource settings. Here, we present a quick, low-cost tool to screen for the common VOCs, designed to support surveillance efforts in low-resource settings. This tool was used to screen samples from Burkina Faso and Western Kenya throughout the pandemic. We show through comparison to sequencing that our assay can generate highly similar data on the different variants circulating in a population, therefore showing the effectiveness of our tool. While not a replacement for sequencing, we present a method of screening and prioritizing samples for further investigation and reduce overburdening sequencing capacity. Our findings provide insight into one potential tool that could be further applied to pathogen screening in the absence of robust sequencing infrastructure.</p>\",\"PeriodicalId\":19052,\"journal\":{\"name\":\"mSphere\",\"volume\":\" \",\"pages\":\"e0002725\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSphere\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msphere.00027-25\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00027-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Application of a high-resolution melt assay for monitoring SARS-CoV-2 variants in Burkina Faso and Kenya.
The rapid emergence and global dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlighted a need for robust, adaptable surveillance systems. However, financial and infrastructure requirements for whole-genome sequencing mean most surveillance data have come from higher-resource geographies, despite unprecedented investment in sequencing in low- and middle-income countries (LMICs). Consequently, the molecular epidemiology of SARS-CoV-2 in some LMICs is limited, and there is a need for more cost-accessible technologies to help close data gaps for surveillance of SARS-CoV-2 variants. To address this, we have developed two high-resolution melt (HRM) curve assays that target variant-defining mutations in the SARS-CoV-2 genome, which give unique signature profiles that define different SARS-CoV-2 variants of concern (VOCs). Extracted RNA from SARS-CoV-2-positive samples collected from 205 participants (112 in Burkina Faso, 93 in Kenya) enrolled in the MALCOV study (Malaria as a Risk Factor for COVID-19) between February 2021 and February 2022 were analyzed using our optimized HRM assays. With next-generation sequencing on Oxford Nanopore MinION as a reference, two HRM assays, HRM-VOC-1 and HRM-VOC-2, demonstrated sensitivity/specificity of 100%/99.29% and 92.86%/99.39%, respectively, for detecting Alpha, 90.08%/100% and 92.31%/100% for Delta, and 93.75%/100% and 100%/99.38% for Omicron BA.1. The assays described here provide a lower-cost approach to conducting molecular epidemiology, capable of high-throughput testing. We successfully scaled up the HRM-VOC-2 assay to screen a total of 506 samples from which we were able to show the replacement of Alpha with the introduction of Delta and the replacement of Delta by the Omicron variant in this community in Kisumu, Kenya.IMPORTANCEThe rapid evolution of the severe acute respiratory syndrome coronavirus 2 variants of concern (VOCs) demonstrated the need for accessible surveillance tools so all communities can conduct viral surveillance. Sequencing, the gold standard, is still a largely inaccessible methodology in low-resource settings. Here, we present a quick, low-cost tool to screen for the common VOCs, designed to support surveillance efforts in low-resource settings. This tool was used to screen samples from Burkina Faso and Western Kenya throughout the pandemic. We show through comparison to sequencing that our assay can generate highly similar data on the different variants circulating in a population, therefore showing the effectiveness of our tool. While not a replacement for sequencing, we present a method of screening and prioritizing samples for further investigation and reduce overburdening sequencing capacity. Our findings provide insight into one potential tool that could be further applied to pathogen screening in the absence of robust sequencing infrastructure.
期刊介绍:
mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.