{"title":"骨质疏松症患病率预测的特征提取方法与机器学习模型的比较分析。","authors":"Danni Zhang, Xingyu Yang, Fangying Wang, Cifang Qiu, Yanfu Chai, Danruo Fang","doi":"10.1007/s10916-025-02203-1","DOIUrl":null,"url":null,"abstract":"<p><p>This study systematically examined the impact of three feature selection techniques (Boruta, Extreme gradient boosting (XGBoost), and Lasso) for optimizing four machine learning models (Random forest (RF), XGBoost, Logistic regression (LR), and Support vector machine (SVM)) in predicting bone density prevalence. Our findings revealed that varying data partitioning ratios (training and test sets: 0.6:0.4; 0.7:0.3; 0.8:0.2; 0.9:0.1) minimally impacted the prediction accuracy across all four models, a conclusion reinforced by 10-fold cross validation. Besides, principal component analysis (PCA) led to substantial accuracy degradation (0.6-0.8 range), suggesting incompatibility with this study's requirements due to the inherent complex decision boundaries in the original high-dimensional data. Comparative analysis demonstrated that the Boruta-XGBoost combination achieved superior performance (accuracy: 0.9083 ± 0.0146), significantly outperforming the Lasso-LR combination (0.7480 ± 0.0157) across all evaluation frameworks. Regarding model evaluation metrics, the RF model exhibited enhanced discriminative capacity with Area under the receiver operating characteristic (AUROC) values of 0.85, 0.81, and 0.80 under different feature selection approaches, surpassing the SVM model (0.78, 0.76, and 0.76). This advantage likely stems from RF's native capability to capture non-linear relationships and feature interactions.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"72"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Feature Extraction Methods and Machine Learning Models for Predicting Osteoporosis Prevalence.\",\"authors\":\"Danni Zhang, Xingyu Yang, Fangying Wang, Cifang Qiu, Yanfu Chai, Danruo Fang\",\"doi\":\"10.1007/s10916-025-02203-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study systematically examined the impact of three feature selection techniques (Boruta, Extreme gradient boosting (XGBoost), and Lasso) for optimizing four machine learning models (Random forest (RF), XGBoost, Logistic regression (LR), and Support vector machine (SVM)) in predicting bone density prevalence. Our findings revealed that varying data partitioning ratios (training and test sets: 0.6:0.4; 0.7:0.3; 0.8:0.2; 0.9:0.1) minimally impacted the prediction accuracy across all four models, a conclusion reinforced by 10-fold cross validation. Besides, principal component analysis (PCA) led to substantial accuracy degradation (0.6-0.8 range), suggesting incompatibility with this study's requirements due to the inherent complex decision boundaries in the original high-dimensional data. Comparative analysis demonstrated that the Boruta-XGBoost combination achieved superior performance (accuracy: 0.9083 ± 0.0146), significantly outperforming the Lasso-LR combination (0.7480 ± 0.0157) across all evaluation frameworks. Regarding model evaluation metrics, the RF model exhibited enhanced discriminative capacity with Area under the receiver operating characteristic (AUROC) values of 0.85, 0.81, and 0.80 under different feature selection approaches, surpassing the SVM model (0.78, 0.76, and 0.76). This advantage likely stems from RF's native capability to capture non-linear relationships and feature interactions.</p>\",\"PeriodicalId\":16338,\"journal\":{\"name\":\"Journal of Medical Systems\",\"volume\":\"49 1\",\"pages\":\"72\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10916-025-02203-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02203-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Comparative Analysis of Feature Extraction Methods and Machine Learning Models for Predicting Osteoporosis Prevalence.
This study systematically examined the impact of three feature selection techniques (Boruta, Extreme gradient boosting (XGBoost), and Lasso) for optimizing four machine learning models (Random forest (RF), XGBoost, Logistic regression (LR), and Support vector machine (SVM)) in predicting bone density prevalence. Our findings revealed that varying data partitioning ratios (training and test sets: 0.6:0.4; 0.7:0.3; 0.8:0.2; 0.9:0.1) minimally impacted the prediction accuracy across all four models, a conclusion reinforced by 10-fold cross validation. Besides, principal component analysis (PCA) led to substantial accuracy degradation (0.6-0.8 range), suggesting incompatibility with this study's requirements due to the inherent complex decision boundaries in the original high-dimensional data. Comparative analysis demonstrated that the Boruta-XGBoost combination achieved superior performance (accuracy: 0.9083 ± 0.0146), significantly outperforming the Lasso-LR combination (0.7480 ± 0.0157) across all evaluation frameworks. Regarding model evaluation metrics, the RF model exhibited enhanced discriminative capacity with Area under the receiver operating characteristic (AUROC) values of 0.85, 0.81, and 0.80 under different feature selection approaches, surpassing the SVM model (0.78, 0.76, and 0.76). This advantage likely stems from RF's native capability to capture non-linear relationships and feature interactions.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.