高质量CEST映射与洛伦兹模型通知神经表示。

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Chu Chen, Yang Liu, Se Weon Park, Jizhou Li, Kannie W Y Chan, Jianpan Huang, Jean-Michel Morel, Raymond H Chan
{"title":"高质量CEST映射与洛伦兹模型通知神经表示。","authors":"Chu Chen, Yang Liu, Se Weon Park, Jizhou Li, Kannie W Y Chan, Jianpan Huang, Jean-Michel Morel, Raymond H Chan","doi":"10.1109/TBME.2025.3574238","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical Exchange Saturation Transfer (CEST) MRI has demonstrated its remarkable ability to enhance the detection of macromolecules and metabolites with low concentrations. While CEST mapping is essential for quantifying molecular information, conventional methods face critical limitations: model-based approaches are constrained by limited sensitivity and robustness depending heavily on parameter setups, while data-driven deep learning methods lack generalizability across heterogeneous datasets and acquisition protocols. To overcome these challenges, we propose a Lorentzian-model Informed Neural Representation (LINR) framework for high-quality CEST mapping. LINR employs a self-supervised neural architecture embedding the Lorentzian equation - the fundamental biophysical model of CEST signal evolution - to directly reconstruct high-sensitivity parameter maps from raw z-spectra, eliminating dependency on labeled training data. Convergence of the self-supervised training strategy is guaranteed theoretically, ensuring LINR's mathematical validity. The superior performance of LINR in capturing CEST contrasts is revealed through comprehensive evaluations based on synthetic phantoms and in-vivo experiments (including tumor and Alzheimer's disease models). The intuitive parameter-free design enables adaptive integration into diverse CEST imaging workflows, positioning LINR as a versatile tool for non-invasive molecular diagnostics and pathophysiological discovery.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Quality CEST Mapping With Lorentzian-Model Informed Neural Representation.\",\"authors\":\"Chu Chen, Yang Liu, Se Weon Park, Jizhou Li, Kannie W Y Chan, Jianpan Huang, Jean-Michel Morel, Raymond H Chan\",\"doi\":\"10.1109/TBME.2025.3574238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemical Exchange Saturation Transfer (CEST) MRI has demonstrated its remarkable ability to enhance the detection of macromolecules and metabolites with low concentrations. While CEST mapping is essential for quantifying molecular information, conventional methods face critical limitations: model-based approaches are constrained by limited sensitivity and robustness depending heavily on parameter setups, while data-driven deep learning methods lack generalizability across heterogeneous datasets and acquisition protocols. To overcome these challenges, we propose a Lorentzian-model Informed Neural Representation (LINR) framework for high-quality CEST mapping. LINR employs a self-supervised neural architecture embedding the Lorentzian equation - the fundamental biophysical model of CEST signal evolution - to directly reconstruct high-sensitivity parameter maps from raw z-spectra, eliminating dependency on labeled training data. Convergence of the self-supervised training strategy is guaranteed theoretically, ensuring LINR's mathematical validity. The superior performance of LINR in capturing CEST contrasts is revealed through comprehensive evaluations based on synthetic phantoms and in-vivo experiments (including tumor and Alzheimer's disease models). The intuitive parameter-free design enables adaptive integration into diverse CEST imaging workflows, positioning LINR as a versatile tool for non-invasive molecular diagnostics and pathophysiological discovery.</p>\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBME.2025.3574238\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3574238","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

化学交换饱和转移(CEST) MRI在检测低浓度的大分子和代谢物方面具有显著的优势。虽然CEST映射对于定量分子信息至关重要,但传统方法面临着严重的局限性:基于模型的方法受到有限的灵敏度和鲁棒性的限制,这在很大程度上取决于参数设置,而数据驱动的深度学习方法缺乏跨异构数据集和获取协议的通用性。为了克服这些挑战,我们提出了一个用于高质量CEST映射的洛伦兹模型知情神经表示(LINR)框架。LINR采用嵌入洛伦兹方程(CEST信号演化的基本生物物理模型)的自监督神经结构,直接从原始z谱中重建高灵敏度参数图,消除了对标记训练数据的依赖。从理论上保证了自监督训练策略的收敛性,保证了线性回归算法的数学有效性。通过基于合成幻影和体内实验(包括肿瘤和阿尔茨海默病模型)的综合评估,揭示了LINR在捕获CEST对比方面的优越性能。直观的无参数设计可以自适应集成到各种CEST成像工作流程中,将LINR定位为非侵入性分子诊断和病理生理发现的多功能工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Quality CEST Mapping With Lorentzian-Model Informed Neural Representation.

Chemical Exchange Saturation Transfer (CEST) MRI has demonstrated its remarkable ability to enhance the detection of macromolecules and metabolites with low concentrations. While CEST mapping is essential for quantifying molecular information, conventional methods face critical limitations: model-based approaches are constrained by limited sensitivity and robustness depending heavily on parameter setups, while data-driven deep learning methods lack generalizability across heterogeneous datasets and acquisition protocols. To overcome these challenges, we propose a Lorentzian-model Informed Neural Representation (LINR) framework for high-quality CEST mapping. LINR employs a self-supervised neural architecture embedding the Lorentzian equation - the fundamental biophysical model of CEST signal evolution - to directly reconstruct high-sensitivity parameter maps from raw z-spectra, eliminating dependency on labeled training data. Convergence of the self-supervised training strategy is guaranteed theoretically, ensuring LINR's mathematical validity. The superior performance of LINR in capturing CEST contrasts is revealed through comprehensive evaluations based on synthetic phantoms and in-vivo experiments (including tumor and Alzheimer's disease models). The intuitive parameter-free design enables adaptive integration into diverse CEST imaging workflows, positioning LINR as a versatile tool for non-invasive molecular diagnostics and pathophysiological discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信