多尺度时空动态图神经网络对心力衰竭患者死亡风险的早期预测。

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Longfei Liu, Rongqin Chen, Jifu Qu, Chunli Liu, Ye Li, Dan Wu
{"title":"多尺度时空动态图神经网络对心力衰竭患者死亡风险的早期预测。","authors":"Longfei Liu, Rongqin Chen, Jifu Qu, Chunli Liu, Ye Li, Dan Wu","doi":"10.1109/JBHI.2025.3574566","DOIUrl":null,"url":null,"abstract":"<p><p>Heart Failure (HF) stands as a principal public health issue worldwide, imposing a significant burden on healthcare systems. While existing prognostic methods have achieved certain milestones in predicting the early mortality risk of HF patients, they have not fully considered the dynamic interdependencies among physiological parameters. This paper introduces a novel Multi-scale Spatiotemporal Dynamic Graph Neural Network, MSTD-GNN, which enhances the prediction capability for early mortality in HF patients by dynamically extracting spatio-temporal information of physiological parameters from ICU patient Electronic Health Records (EHRs). Our model constructs dynamic graphs to model multivariate time series data, revealing the implicit dependencies between physiological parameters and capturing the inherent dynamics of the data. We conducted experiments using the MIMIC-III and MIMIC-IV datasets. The experimental results show that, compared to existing methods, MSTD-GNN demonstrates superior performance in predicting the early mortality risk of HF patients. On the MIMIC-III and MIMIC-IV datasets, the AUC scores of MSTD-GNN reached 83.93% and 81.74%, respectively. Furthermore, through dynamic graphs, our model unveils the dynamic relationships between physiological variables across different time scales. Code is available at https://github.com/dragonlfy/MSTDGNN-Mortality-Prediction.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale Spatiotemporal Dynamic Graph Neural Network for Early Prediction of Mortality Risks in Heart Failure Patients.\",\"authors\":\"Longfei Liu, Rongqin Chen, Jifu Qu, Chunli Liu, Ye Li, Dan Wu\",\"doi\":\"10.1109/JBHI.2025.3574566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heart Failure (HF) stands as a principal public health issue worldwide, imposing a significant burden on healthcare systems. While existing prognostic methods have achieved certain milestones in predicting the early mortality risk of HF patients, they have not fully considered the dynamic interdependencies among physiological parameters. This paper introduces a novel Multi-scale Spatiotemporal Dynamic Graph Neural Network, MSTD-GNN, which enhances the prediction capability for early mortality in HF patients by dynamically extracting spatio-temporal information of physiological parameters from ICU patient Electronic Health Records (EHRs). Our model constructs dynamic graphs to model multivariate time series data, revealing the implicit dependencies between physiological parameters and capturing the inherent dynamics of the data. We conducted experiments using the MIMIC-III and MIMIC-IV datasets. The experimental results show that, compared to existing methods, MSTD-GNN demonstrates superior performance in predicting the early mortality risk of HF patients. On the MIMIC-III and MIMIC-IV datasets, the AUC scores of MSTD-GNN reached 83.93% and 81.74%, respectively. Furthermore, through dynamic graphs, our model unveils the dynamic relationships between physiological variables across different time scales. Code is available at https://github.com/dragonlfy/MSTDGNN-Mortality-Prediction.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2025.3574566\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3574566","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

心力衰竭(HF)是世界范围内的一个主要公共卫生问题,对卫生保健系统造成了重大负担。虽然现有的预后方法在预测心衰患者早期死亡风险方面取得了一定的里程碑,但它们并没有充分考虑生理参数之间的动态相互依赖性。本文介绍了一种新的多尺度时空动态图神经网络(MSTD-GNN),该网络通过动态提取ICU患者电子病历中生理参数的时空信息,提高了对HF患者早期死亡的预测能力。我们的模型构建了动态图来模拟多变量时间序列数据,揭示了生理参数之间的隐含依赖关系,并捕获了数据的内在动态。我们使用MIMIC-III和MIMIC-IV数据集进行实验。实验结果表明,与现有方法相比,MSTD-GNN在预测心衰患者早期死亡风险方面具有优越的性能。在MIMIC-III和MIMIC-IV数据集上,MSTD-GNN的AUC得分分别达到83.93%和81.74%。此外,通过动态图形,我们的模型揭示了生理变量在不同时间尺度上的动态关系。代码可从https://github.com/dragonlfy/MSTDGNN-Mortality-Prediction获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-scale Spatiotemporal Dynamic Graph Neural Network for Early Prediction of Mortality Risks in Heart Failure Patients.

Heart Failure (HF) stands as a principal public health issue worldwide, imposing a significant burden on healthcare systems. While existing prognostic methods have achieved certain milestones in predicting the early mortality risk of HF patients, they have not fully considered the dynamic interdependencies among physiological parameters. This paper introduces a novel Multi-scale Spatiotemporal Dynamic Graph Neural Network, MSTD-GNN, which enhances the prediction capability for early mortality in HF patients by dynamically extracting spatio-temporal information of physiological parameters from ICU patient Electronic Health Records (EHRs). Our model constructs dynamic graphs to model multivariate time series data, revealing the implicit dependencies between physiological parameters and capturing the inherent dynamics of the data. We conducted experiments using the MIMIC-III and MIMIC-IV datasets. The experimental results show that, compared to existing methods, MSTD-GNN demonstrates superior performance in predicting the early mortality risk of HF patients. On the MIMIC-III and MIMIC-IV datasets, the AUC scores of MSTD-GNN reached 83.93% and 81.74%, respectively. Furthermore, through dynamic graphs, our model unveils the dynamic relationships between physiological variables across different time scales. Code is available at https://github.com/dragonlfy/MSTDGNN-Mortality-Prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信