Yuqi Wen, Zheng Han, Bao Wang, Chenxi Feng, Xvshen Ding, Yangni Li, Yan Lv, Xuelian Wang, Li Gao
{"title":"内质网应激抑制通过减少Miro1促进线粒体自噬,以挽救帕金森病线粒体功能障碍并保护多巴胺神经元。","authors":"Yuqi Wen, Zheng Han, Bao Wang, Chenxi Feng, Xvshen Ding, Yangni Li, Yan Lv, Xuelian Wang, Li Gao","doi":"10.1007/s10571-025-01575-9","DOIUrl":null,"url":null,"abstract":"<p><p>Both mitochondrial dysfunction and endoplasmic reticulum stress (ERS) have been implicated in the pathogenesis of Parkinson's disease (PD). However, the underlying regulatory mechanisms between ERS and mitochondrial dysfunction remain unclear. In the present study, we found that an in vitro model of Parkinson's disease (PD) induced by methyl-4-phenylpyridine (MPP<sup>+</sup>) showed increased intracellular peroxidation, leading to a significant increase in ERS. ER staining and immunofluorescence analysis of ERS-related proteins verified the presence of ERS, whereas transmission electron microscopy (TEM) showed complete depletion of ER. Notably, treatment with 4-phenylbutyric acid (4-PBA) to suppress ERS reduced apoptosis and concurrently reversed the ER micromorphology. Furthermore, 4-PBA alleviated mitochondrial dysfunction, as shown by increased mitochondrial membrane potential (MMP), upregulation of electron transport chain proteins, and restoration of mitochondrial integrity. Further studies revealed that the effect of 4-PBA could be attributed to the modulation of the mitochondrial Rho-GTPase 1 (Miro1)-mitophagy axis. In vivo experiments in Parkinson's disease models demonstrated that inhibiting ERS reduced dopaminergic neuron loss while improving cognitive and motor function. Collectively, these findings indicate that treatments targeting ERS may be potential candidates for treating PD.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"45 1","pages":"53"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122992/pdf/","citationCount":"0","resultStr":"{\"title\":\"Endoplasmic Reticulum Stress Inhibition Promotes Mitophagy via Miro1 Reduction to Rescue Mitochondrial Dysfunction and Protect Dopamine Neurons in Parkinson's Disease.\",\"authors\":\"Yuqi Wen, Zheng Han, Bao Wang, Chenxi Feng, Xvshen Ding, Yangni Li, Yan Lv, Xuelian Wang, Li Gao\",\"doi\":\"10.1007/s10571-025-01575-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Both mitochondrial dysfunction and endoplasmic reticulum stress (ERS) have been implicated in the pathogenesis of Parkinson's disease (PD). However, the underlying regulatory mechanisms between ERS and mitochondrial dysfunction remain unclear. In the present study, we found that an in vitro model of Parkinson's disease (PD) induced by methyl-4-phenylpyridine (MPP<sup>+</sup>) showed increased intracellular peroxidation, leading to a significant increase in ERS. ER staining and immunofluorescence analysis of ERS-related proteins verified the presence of ERS, whereas transmission electron microscopy (TEM) showed complete depletion of ER. Notably, treatment with 4-phenylbutyric acid (4-PBA) to suppress ERS reduced apoptosis and concurrently reversed the ER micromorphology. Furthermore, 4-PBA alleviated mitochondrial dysfunction, as shown by increased mitochondrial membrane potential (MMP), upregulation of electron transport chain proteins, and restoration of mitochondrial integrity. Further studies revealed that the effect of 4-PBA could be attributed to the modulation of the mitochondrial Rho-GTPase 1 (Miro1)-mitophagy axis. In vivo experiments in Parkinson's disease models demonstrated that inhibiting ERS reduced dopaminergic neuron loss while improving cognitive and motor function. Collectively, these findings indicate that treatments targeting ERS may be potential candidates for treating PD.</p>\",\"PeriodicalId\":9742,\"journal\":{\"name\":\"Cellular and Molecular Neurobiology\",\"volume\":\"45 1\",\"pages\":\"53\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122992/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10571-025-01575-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-025-01575-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Endoplasmic Reticulum Stress Inhibition Promotes Mitophagy via Miro1 Reduction to Rescue Mitochondrial Dysfunction and Protect Dopamine Neurons in Parkinson's Disease.
Both mitochondrial dysfunction and endoplasmic reticulum stress (ERS) have been implicated in the pathogenesis of Parkinson's disease (PD). However, the underlying regulatory mechanisms between ERS and mitochondrial dysfunction remain unclear. In the present study, we found that an in vitro model of Parkinson's disease (PD) induced by methyl-4-phenylpyridine (MPP+) showed increased intracellular peroxidation, leading to a significant increase in ERS. ER staining and immunofluorescence analysis of ERS-related proteins verified the presence of ERS, whereas transmission electron microscopy (TEM) showed complete depletion of ER. Notably, treatment with 4-phenylbutyric acid (4-PBA) to suppress ERS reduced apoptosis and concurrently reversed the ER micromorphology. Furthermore, 4-PBA alleviated mitochondrial dysfunction, as shown by increased mitochondrial membrane potential (MMP), upregulation of electron transport chain proteins, and restoration of mitochondrial integrity. Further studies revealed that the effect of 4-PBA could be attributed to the modulation of the mitochondrial Rho-GTPase 1 (Miro1)-mitophagy axis. In vivo experiments in Parkinson's disease models demonstrated that inhibiting ERS reduced dopaminergic neuron loss while improving cognitive and motor function. Collectively, these findings indicate that treatments targeting ERS may be potential candidates for treating PD.
期刊介绍:
Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.