Johanna Mölleken, Angelique Kragl, Astrid Monecke, Isabella Metelmann, Sebastian Krämer, Sonja Kallendrusch
{"title":"在患者来源的组织培养中,青蒿素衍生物通过调节GPX4不同程度地影响肺癌亚型细胞死亡。","authors":"Johanna Mölleken, Angelique Kragl, Astrid Monecke, Isabella Metelmann, Sebastian Krämer, Sonja Kallendrusch","doi":"10.1038/s41420-025-02537-2","DOIUrl":null,"url":null,"abstract":"<p><p>Resistant tumor cell populations are common after cytostatic drugs treatment. To overcome resistance mechanisms artemisinin derivatives, known for its complementary use during cancer treatement and ferroptosis induction, were investigated both as single agents and in combination with cisplatin (3 µM) in a complex organotypic tissue model of non-small cell lung cancer (NSCLC) patient samples. All substances-artemisinin (ART, 100 µM), artemether (ATM, 50 µM), artesunate (ATS, 20 µM), and dihydroartemisinin (DHA, 10 µM)-showed beneficial effects in most of the investigated patient-derived tissue cultures (PDTC). Tumor proliferation was reduced by DHA and ATS in both, standalone treatment and in combination with cisplatin, surpassing the efficacy of single cisplatin supplementation. In combination with cisplatin tumor apoptosis increased in most of lung squamous cell carcinoma (LUSC) PDTC, but not in lung adenocarcinoma (LUAD). The enzyme GPX4, inhibiting ferroptosis was up-regulated in LUAD but not in LUSC. Taken together, in the complex PDTC model system, LUSC displayed a higher sensitivity to ART derivatives, due to the lack of GPX4-mediated resistance to ferroptosis.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"256"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119945/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artemisinin derivatives differently affect cell death of lung cancer subtypes by regulating GPX4 in patient-derived tissue cultures.\",\"authors\":\"Johanna Mölleken, Angelique Kragl, Astrid Monecke, Isabella Metelmann, Sebastian Krämer, Sonja Kallendrusch\",\"doi\":\"10.1038/s41420-025-02537-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resistant tumor cell populations are common after cytostatic drugs treatment. To overcome resistance mechanisms artemisinin derivatives, known for its complementary use during cancer treatement and ferroptosis induction, were investigated both as single agents and in combination with cisplatin (3 µM) in a complex organotypic tissue model of non-small cell lung cancer (NSCLC) patient samples. All substances-artemisinin (ART, 100 µM), artemether (ATM, 50 µM), artesunate (ATS, 20 µM), and dihydroartemisinin (DHA, 10 µM)-showed beneficial effects in most of the investigated patient-derived tissue cultures (PDTC). Tumor proliferation was reduced by DHA and ATS in both, standalone treatment and in combination with cisplatin, surpassing the efficacy of single cisplatin supplementation. In combination with cisplatin tumor apoptosis increased in most of lung squamous cell carcinoma (LUSC) PDTC, but not in lung adenocarcinoma (LUAD). The enzyme GPX4, inhibiting ferroptosis was up-regulated in LUAD but not in LUSC. Taken together, in the complex PDTC model system, LUSC displayed a higher sensitivity to ART derivatives, due to the lack of GPX4-mediated resistance to ferroptosis.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"11 1\",\"pages\":\"256\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119945/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-025-02537-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02537-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Artemisinin derivatives differently affect cell death of lung cancer subtypes by regulating GPX4 in patient-derived tissue cultures.
Resistant tumor cell populations are common after cytostatic drugs treatment. To overcome resistance mechanisms artemisinin derivatives, known for its complementary use during cancer treatement and ferroptosis induction, were investigated both as single agents and in combination with cisplatin (3 µM) in a complex organotypic tissue model of non-small cell lung cancer (NSCLC) patient samples. All substances-artemisinin (ART, 100 µM), artemether (ATM, 50 µM), artesunate (ATS, 20 µM), and dihydroartemisinin (DHA, 10 µM)-showed beneficial effects in most of the investigated patient-derived tissue cultures (PDTC). Tumor proliferation was reduced by DHA and ATS in both, standalone treatment and in combination with cisplatin, surpassing the efficacy of single cisplatin supplementation. In combination with cisplatin tumor apoptosis increased in most of lung squamous cell carcinoma (LUSC) PDTC, but not in lung adenocarcinoma (LUAD). The enzyme GPX4, inhibiting ferroptosis was up-regulated in LUAD but not in LUSC. Taken together, in the complex PDTC model system, LUSC displayed a higher sensitivity to ART derivatives, due to the lack of GPX4-mediated resistance to ferroptosis.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.