Dominik Schum, Michaela K Fiedler, Wangchen Shen, Stephan A Sieber, Diana M Downs
{"title":"化学蛋白质组学提高了对肠沙门氏菌2AA胁迫的认识。","authors":"Dominik Schum, Michaela K Fiedler, Wangchen Shen, Stephan A Sieber, Diana M Downs","doi":"10.1128/msystems.00540-25","DOIUrl":null,"url":null,"abstract":"<p><p>Pyridoxal 5'-phosphate (PLP) is an essential cofactor for enzymes that catalyze diverse reactions in central metabolism. 2-Aminoacrylate (2AA) is a reactive enamine and an obligate catalytic intermediate in some PLP-mediated reactions. In the absence of the enamine/imine deaminase RidA, <i>Salmonella enterica</i> accumulates 2AA, which causes cellular stress. 2AA can attack PLP in the active site of some enzymes and covalently inactivate them by forming a 2AA-PLP adduct, which has already been characterized for some target enzymes <i>in vivo</i> and <i>in vitro</i>. The mechanism of 2AA attack suggests that a majority of cellular PLP-DEs would be targets of 2AA damage. Herein, a chemical proteomics workflow that uses PL (pyridoxal) probes to enrich PLP-DEs with a click chemistry-based protocol was implemented to investigate the global scale of 2AA damage in <i>S. enterica</i>. The results showed that PLP-DEs could be enriched in <i>S. enterica</i> with two different PL probes. When cells were labeled by providing a PL probe as the sole source of vitamin B6, several proteins were found to be more enriched when grown in conditions of high 2AA versus low 2AA stress. These data identified proteins that were previously shown to be attacked by 2AA as well as new candidate targets, demonstrating the usefulness of this approach to define the 2AA stress response with a global perspective. Growth analyses indicated that 2AA stress impacts the salvage of PL probes, suggesting that these and other PL probes will be valuable in future physiological studies to understand PLP salvage, a critical pathway in all organisms. In total, this study expands our understanding of 2AA metabolism and takes an initial step toward characterizing the global impact of 2AA stress in <i>S. enterica</i>.</p><p><strong>Importance: </strong>Loss of RidA homologs results in 2-aminoacrylate stress in <i>Salmonella</i> and other bacteria. The stress is derived from the reaction of 2AA with a pyridoxal phosphate cofactor in metabolic enzymes, which inactivates the respective enzymes. This study uses a chemical proteomic method and, with an initial test case, explores the damage that is generated by 2AA on a global proteomic scale. This work provides a basis for probing the extent of 2AA stress in different organisms and for identifying the enzymes targeted by 2AA.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0054025"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical proteomics enhances the understanding of 2AA stress in <i>Salmonella enterica</i>.\",\"authors\":\"Dominik Schum, Michaela K Fiedler, Wangchen Shen, Stephan A Sieber, Diana M Downs\",\"doi\":\"10.1128/msystems.00540-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pyridoxal 5'-phosphate (PLP) is an essential cofactor for enzymes that catalyze diverse reactions in central metabolism. 2-Aminoacrylate (2AA) is a reactive enamine and an obligate catalytic intermediate in some PLP-mediated reactions. In the absence of the enamine/imine deaminase RidA, <i>Salmonella enterica</i> accumulates 2AA, which causes cellular stress. 2AA can attack PLP in the active site of some enzymes and covalently inactivate them by forming a 2AA-PLP adduct, which has already been characterized for some target enzymes <i>in vivo</i> and <i>in vitro</i>. The mechanism of 2AA attack suggests that a majority of cellular PLP-DEs would be targets of 2AA damage. Herein, a chemical proteomics workflow that uses PL (pyridoxal) probes to enrich PLP-DEs with a click chemistry-based protocol was implemented to investigate the global scale of 2AA damage in <i>S. enterica</i>. The results showed that PLP-DEs could be enriched in <i>S. enterica</i> with two different PL probes. When cells were labeled by providing a PL probe as the sole source of vitamin B6, several proteins were found to be more enriched when grown in conditions of high 2AA versus low 2AA stress. These data identified proteins that were previously shown to be attacked by 2AA as well as new candidate targets, demonstrating the usefulness of this approach to define the 2AA stress response with a global perspective. Growth analyses indicated that 2AA stress impacts the salvage of PL probes, suggesting that these and other PL probes will be valuable in future physiological studies to understand PLP salvage, a critical pathway in all organisms. In total, this study expands our understanding of 2AA metabolism and takes an initial step toward characterizing the global impact of 2AA stress in <i>S. enterica</i>.</p><p><strong>Importance: </strong>Loss of RidA homologs results in 2-aminoacrylate stress in <i>Salmonella</i> and other bacteria. The stress is derived from the reaction of 2AA with a pyridoxal phosphate cofactor in metabolic enzymes, which inactivates the respective enzymes. This study uses a chemical proteomic method and, with an initial test case, explores the damage that is generated by 2AA on a global proteomic scale. This work provides a basis for probing the extent of 2AA stress in different organisms and for identifying the enzymes targeted by 2AA.</p>\",\"PeriodicalId\":18819,\"journal\":{\"name\":\"mSystems\",\"volume\":\" \",\"pages\":\"e0054025\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msystems.00540-25\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.00540-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Chemical proteomics enhances the understanding of 2AA stress in Salmonella enterica.
Pyridoxal 5'-phosphate (PLP) is an essential cofactor for enzymes that catalyze diverse reactions in central metabolism. 2-Aminoacrylate (2AA) is a reactive enamine and an obligate catalytic intermediate in some PLP-mediated reactions. In the absence of the enamine/imine deaminase RidA, Salmonella enterica accumulates 2AA, which causes cellular stress. 2AA can attack PLP in the active site of some enzymes and covalently inactivate them by forming a 2AA-PLP adduct, which has already been characterized for some target enzymes in vivo and in vitro. The mechanism of 2AA attack suggests that a majority of cellular PLP-DEs would be targets of 2AA damage. Herein, a chemical proteomics workflow that uses PL (pyridoxal) probes to enrich PLP-DEs with a click chemistry-based protocol was implemented to investigate the global scale of 2AA damage in S. enterica. The results showed that PLP-DEs could be enriched in S. enterica with two different PL probes. When cells were labeled by providing a PL probe as the sole source of vitamin B6, several proteins were found to be more enriched when grown in conditions of high 2AA versus low 2AA stress. These data identified proteins that were previously shown to be attacked by 2AA as well as new candidate targets, demonstrating the usefulness of this approach to define the 2AA stress response with a global perspective. Growth analyses indicated that 2AA stress impacts the salvage of PL probes, suggesting that these and other PL probes will be valuable in future physiological studies to understand PLP salvage, a critical pathway in all organisms. In total, this study expands our understanding of 2AA metabolism and takes an initial step toward characterizing the global impact of 2AA stress in S. enterica.
Importance: Loss of RidA homologs results in 2-aminoacrylate stress in Salmonella and other bacteria. The stress is derived from the reaction of 2AA with a pyridoxal phosphate cofactor in metabolic enzymes, which inactivates the respective enzymes. This study uses a chemical proteomic method and, with an initial test case, explores the damage that is generated by 2AA on a global proteomic scale. This work provides a basis for probing the extent of 2AA stress in different organisms and for identifying the enzymes targeted by 2AA.
mSystemsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍:
mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.