LightCTL:具有上下文感知提示的轻量级对比TCR-pMHC特异性学习。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Fei Ye, Mao Chen, Yixuan Huang, Ruihao Zhang, Xuqi Li, Xiuyuan Wang, Sanyang Han, Lan Ma, Xiao Liu
{"title":"LightCTL:具有上下文感知提示的轻量级对比TCR-pMHC特异性学习。","authors":"Fei Ye, Mao Chen, Yixuan Huang, Ruihao Zhang, Xuqi Li, Xiuyuan Wang, Sanyang Han, Lan Ma, Xiao Liu","doi":"10.1093/bib/bbaf246","DOIUrl":null,"url":null,"abstract":"<p><p>Identification of T cell receptor (TCR) specificities for antigens from large-scale single-cell or bulk TCR repertoire data plays a vital role in disease diagnosis and immunotherapy. In silico prediction models have emerged in recent years. However, the generalizability and transferability of current computational models remain significant hurdles in accurately predicting TCR-pMHC binding specificity, primarily due to the limited availability of experimental data and the vast diversity of TCR sequences. In this paper, we propose a lightweight contrastive TCR-pMHC learning with context-aware prompts, named LightCTL, to infer TCR-pMHC binding specificity. For each TCR and peptide-MHC sequence, we utilize a TCR encoding module and a pMHC encoding module to transform them into latent representations. Specifically, we introduce a contrastive TCR-pMHC learning paradigm to enhance the generalization ability of TCR-pMHC binding specificity prediction by learning the matching relationship between TCR-pMHC and MHC-peptide. We fuse the TCR and pMHC latent representations and employ a novel context-aware prompt module to consider the varying importance of different feature maps. Compared with existing methods, LightCTL substantially improves the accuracy of predicting TCR-pMHC binding specificity. Moreover, comparative experiments across eight independent datasets demonstrate the generalization ability of LightCTL, showing superior performance for predicting unknown TCR-pMHC pairs. Finally, we assess LightCTL's efficacy across different TCR sequence lengths and distinct unseen epitopes, as well as estimate cytomegalovirus-specific TCR diversity and clone frequency from peripheral TCR repertoire data. Overall, our findings highlight LightCTL as a versatile analytical method for advancing novel T-cell therapies and identifying novel biomarkers for disease diagnosis.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121355/pdf/","citationCount":"0","resultStr":"{\"title\":\"LightCTL: lightweight contrastive TCR-pMHC specificity learning with context-aware prompt.\",\"authors\":\"Fei Ye, Mao Chen, Yixuan Huang, Ruihao Zhang, Xuqi Li, Xiuyuan Wang, Sanyang Han, Lan Ma, Xiao Liu\",\"doi\":\"10.1093/bib/bbaf246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identification of T cell receptor (TCR) specificities for antigens from large-scale single-cell or bulk TCR repertoire data plays a vital role in disease diagnosis and immunotherapy. In silico prediction models have emerged in recent years. However, the generalizability and transferability of current computational models remain significant hurdles in accurately predicting TCR-pMHC binding specificity, primarily due to the limited availability of experimental data and the vast diversity of TCR sequences. In this paper, we propose a lightweight contrastive TCR-pMHC learning with context-aware prompts, named LightCTL, to infer TCR-pMHC binding specificity. For each TCR and peptide-MHC sequence, we utilize a TCR encoding module and a pMHC encoding module to transform them into latent representations. Specifically, we introduce a contrastive TCR-pMHC learning paradigm to enhance the generalization ability of TCR-pMHC binding specificity prediction by learning the matching relationship between TCR-pMHC and MHC-peptide. We fuse the TCR and pMHC latent representations and employ a novel context-aware prompt module to consider the varying importance of different feature maps. Compared with existing methods, LightCTL substantially improves the accuracy of predicting TCR-pMHC binding specificity. Moreover, comparative experiments across eight independent datasets demonstrate the generalization ability of LightCTL, showing superior performance for predicting unknown TCR-pMHC pairs. Finally, we assess LightCTL's efficacy across different TCR sequence lengths and distinct unseen epitopes, as well as estimate cytomegalovirus-specific TCR diversity and clone frequency from peripheral TCR repertoire data. Overall, our findings highlight LightCTL as a versatile analytical method for advancing novel T-cell therapies and identifying novel biomarkers for disease diagnosis.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121355/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf246\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf246","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

从大规模单细胞或大量TCR库数据中鉴定抗原的T细胞受体(TCR)特异性在疾病诊断和免疫治疗中起着至关重要的作用。近年来出现了计算机预测模型。然而,目前计算模型的通用性和可移植性在准确预测TCR- pmhc结合特异性方面仍然存在重大障碍,这主要是由于实验数据的有限可用性和TCR序列的巨大多样性。在本文中,我们提出了一种轻量级的TCR-pMHC对比学习,具有上下文感知提示,名为LightCTL,以推断TCR-pMHC结合特异性。对于每个TCR和肽- mhc序列,我们使用TCR编码模块和pMHC编码模块将它们转换为潜在表示。具体而言,我们引入了一种对比TCR-pMHC学习范式,通过学习TCR-pMHC与mhc肽的匹配关系,提高TCR-pMHC结合特异性预测的泛化能力。我们融合了TCR和pMHC潜在表示,并采用了一种新的上下文感知提示模块来考虑不同特征映射的不同重要性。与现有方法相比,LightCTL显著提高了预测TCR-pMHC结合特异性的准确性。此外,跨8个独立数据集的对比实验证明了LightCTL的泛化能力,在预测未知TCR-pMHC对方面表现出优异的性能。最后,我们评估了LightCTL在不同TCR序列长度和不同未见表位上的有效性,并从外周TCR库数据中估计巨细胞病毒特异性TCR多样性和克隆频率。总的来说,我们的研究结果突出了LightCTL作为一种通用的分析方法,用于推进新型t细胞疗法和识别疾病诊断的新型生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LightCTL: lightweight contrastive TCR-pMHC specificity learning with context-aware prompt.

Identification of T cell receptor (TCR) specificities for antigens from large-scale single-cell or bulk TCR repertoire data plays a vital role in disease diagnosis and immunotherapy. In silico prediction models have emerged in recent years. However, the generalizability and transferability of current computational models remain significant hurdles in accurately predicting TCR-pMHC binding specificity, primarily due to the limited availability of experimental data and the vast diversity of TCR sequences. In this paper, we propose a lightweight contrastive TCR-pMHC learning with context-aware prompts, named LightCTL, to infer TCR-pMHC binding specificity. For each TCR and peptide-MHC sequence, we utilize a TCR encoding module and a pMHC encoding module to transform them into latent representations. Specifically, we introduce a contrastive TCR-pMHC learning paradigm to enhance the generalization ability of TCR-pMHC binding specificity prediction by learning the matching relationship between TCR-pMHC and MHC-peptide. We fuse the TCR and pMHC latent representations and employ a novel context-aware prompt module to consider the varying importance of different feature maps. Compared with existing methods, LightCTL substantially improves the accuracy of predicting TCR-pMHC binding specificity. Moreover, comparative experiments across eight independent datasets demonstrate the generalization ability of LightCTL, showing superior performance for predicting unknown TCR-pMHC pairs. Finally, we assess LightCTL's efficacy across different TCR sequence lengths and distinct unseen epitopes, as well as estimate cytomegalovirus-specific TCR diversity and clone frequency from peripheral TCR repertoire data. Overall, our findings highlight LightCTL as a versatile analytical method for advancing novel T-cell therapies and identifying novel biomarkers for disease diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信