评估单细胞转录组学数据移位的分布外检测方法。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Lauren Theunissen, Thomas Mortier, Yvan Saeys, Willem Waegeman
{"title":"评估单细胞转录组学数据移位的分布外检测方法。","authors":"Lauren Theunissen, Thomas Mortier, Yvan Saeys, Willem Waegeman","doi":"10.1093/bib/bbaf239","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic cell-type annotation methods assign cell-type labels to new, unlabeled datasets by leveraging relationships from a reference RNA-seq atlas. However, new datasets may include labels absent from the reference dataset or exhibit feature distributions that diverge from it. These scenarios can significantly affect the reliability of cell type predictions, a factor often overlooked in current automatic annotation methods. The field of out-of-distribution detection (OOD), primarily focused on computer vision, addresses the identification of instances that differ from the training distribution. Therefore, the implementation of OOD methods in the context of novel cell type annotation and data shift detection for single-cell transcriptomics may enhance annotation accuracy and trustworthiness. We evaluate six OOD detection methods: LogitNorm, MC dropout, Deep Ensembles, Energy-based OOD, Deep NN, and Posterior networks, for their annotation and OOD detection performance in both synthetical and real-life application settings. We show that OOD detection methods can accurately identify novel cell types and demonstrate potential to detect significant data shifts in non-integrated datasets. Moreover, we find that integration of the OOD datasets does not interfere with OOD detection of novel cell types.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121363/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of out-of-distribution detection methods for data shifts in single-cell transcriptomics.\",\"authors\":\"Lauren Theunissen, Thomas Mortier, Yvan Saeys, Willem Waegeman\",\"doi\":\"10.1093/bib/bbaf239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automatic cell-type annotation methods assign cell-type labels to new, unlabeled datasets by leveraging relationships from a reference RNA-seq atlas. However, new datasets may include labels absent from the reference dataset or exhibit feature distributions that diverge from it. These scenarios can significantly affect the reliability of cell type predictions, a factor often overlooked in current automatic annotation methods. The field of out-of-distribution detection (OOD), primarily focused on computer vision, addresses the identification of instances that differ from the training distribution. Therefore, the implementation of OOD methods in the context of novel cell type annotation and data shift detection for single-cell transcriptomics may enhance annotation accuracy and trustworthiness. We evaluate six OOD detection methods: LogitNorm, MC dropout, Deep Ensembles, Energy-based OOD, Deep NN, and Posterior networks, for their annotation and OOD detection performance in both synthetical and real-life application settings. We show that OOD detection methods can accurately identify novel cell types and demonstrate potential to detect significant data shifts in non-integrated datasets. Moreover, we find that integration of the OOD datasets does not interfere with OOD detection of novel cell types.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121363/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf239\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf239","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

自动细胞类型注释方法通过利用参考RNA-seq图谱的关系,为新的未标记的数据集分配细胞类型标签。然而,新的数据集可能包含参考数据集中没有的标签,或者显示与参考数据集不同的特征分布。这些场景会显著影响细胞类型预测的可靠性,这是当前自动标注方法中经常忽略的一个因素。分布外检测(out- distribution detection, OOD)主要集中在计算机视觉领域,解决了与训练分布不同的实例的识别问题。因此,在单细胞转录组学的新型细胞类型注释和数据移位检测背景下实施OOD方法可以提高注释的准确性和可信度。我们评估了六种OOD检测方法:LogitNorm、MC dropout、Deep Ensembles、基于能量的OOD、Deep NN和后验网络,以评估它们在综合和现实应用环境中的注释和OOD检测性能。我们表明,OOD检测方法可以准确地识别新的细胞类型,并显示出在非整合数据集中检测重大数据变化的潜力。此外,我们发现OOD数据集的整合不会干扰新细胞类型的OOD检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of out-of-distribution detection methods for data shifts in single-cell transcriptomics.

Automatic cell-type annotation methods assign cell-type labels to new, unlabeled datasets by leveraging relationships from a reference RNA-seq atlas. However, new datasets may include labels absent from the reference dataset or exhibit feature distributions that diverge from it. These scenarios can significantly affect the reliability of cell type predictions, a factor often overlooked in current automatic annotation methods. The field of out-of-distribution detection (OOD), primarily focused on computer vision, addresses the identification of instances that differ from the training distribution. Therefore, the implementation of OOD methods in the context of novel cell type annotation and data shift detection for single-cell transcriptomics may enhance annotation accuracy and trustworthiness. We evaluate six OOD detection methods: LogitNorm, MC dropout, Deep Ensembles, Energy-based OOD, Deep NN, and Posterior networks, for their annotation and OOD detection performance in both synthetical and real-life application settings. We show that OOD detection methods can accurately identify novel cell types and demonstrate potential to detect significant data shifts in non-integrated datasets. Moreover, we find that integration of the OOD datasets does not interfere with OOD detection of novel cell types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信