{"title":"利用α -糖醛酸结合肽修饰的脂质纳米颗粒将mRNA传递到杜氏肌营养不良模型小鼠的肌肉中。","authors":"Eri Sasaki, Yuki Itaya, Yoko Endo-Takahashi, Yusuke Yano, Nobuhito Hamano, Keisuke Hamada, Yamato Kikkawa, Kosuke Nakashima, Rui Tada, Tsuyoshi Miura, Hiroki Tanaka, Hidetaka Akita, Motoyoshi Nomizu, Yoichi Negishi","doi":"10.1248/bpb.b24-00898","DOIUrl":null,"url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is a hereditary disease that requires gene or nucleic acid therapy, which involves muscle-targeted delivery of therapeutic material. We previously developed liposomes targeting muscle tissue in DMD model mice (mdx) using an A2G80 peptide, which has an affinity for α-dystroglycan abundantly expressed on the muscle cell membrane. However, these liposomes did not carry gene or nucleic acids. In this study, we aimed to develop muscle-targeting lipid nanoparticles (LNPs) encapsulating luciferase mRNA and evaluate gene expression levels after systemic administration of these LNPs. We first evaluated the efficiency of mRNA delivery based on luciferase activity using polyethylene glycol (PEG)-dimyristoyl glycerol (DMG) and PEG-distearoyl glycerol (DSG) in mdx systemic administration. PEG-DSG-LNPs showed lower luciferase expression in the liver and spleen and higher expression in mdx muscle tissue than PEG-DMG-LNPs. The addition of the A2G80 peptide to LNPs using PEG-DSG (A2G80-DSG-LNPs) significantly increased their activity in mdx but not in normal mice. These results suggest that A2G80-DSG-LNPs allow for muscle-targeted mRNA delivery and are useful tools for DMD treatment.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 5","pages":"721-727"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systemic mRNA Delivery into the Muscle of Duchenne Muscular Dystrophy Model Mice Using Alpha-Dystroglycan Binding Peptide Modified Lipid Nanoparticles.\",\"authors\":\"Eri Sasaki, Yuki Itaya, Yoko Endo-Takahashi, Yusuke Yano, Nobuhito Hamano, Keisuke Hamada, Yamato Kikkawa, Kosuke Nakashima, Rui Tada, Tsuyoshi Miura, Hiroki Tanaka, Hidetaka Akita, Motoyoshi Nomizu, Yoichi Negishi\",\"doi\":\"10.1248/bpb.b24-00898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Duchenne muscular dystrophy (DMD) is a hereditary disease that requires gene or nucleic acid therapy, which involves muscle-targeted delivery of therapeutic material. We previously developed liposomes targeting muscle tissue in DMD model mice (mdx) using an A2G80 peptide, which has an affinity for α-dystroglycan abundantly expressed on the muscle cell membrane. However, these liposomes did not carry gene or nucleic acids. In this study, we aimed to develop muscle-targeting lipid nanoparticles (LNPs) encapsulating luciferase mRNA and evaluate gene expression levels after systemic administration of these LNPs. We first evaluated the efficiency of mRNA delivery based on luciferase activity using polyethylene glycol (PEG)-dimyristoyl glycerol (DMG) and PEG-distearoyl glycerol (DSG) in mdx systemic administration. PEG-DSG-LNPs showed lower luciferase expression in the liver and spleen and higher expression in mdx muscle tissue than PEG-DMG-LNPs. The addition of the A2G80 peptide to LNPs using PEG-DSG (A2G80-DSG-LNPs) significantly increased their activity in mdx but not in normal mice. These results suggest that A2G80-DSG-LNPs allow for muscle-targeted mRNA delivery and are useful tools for DMD treatment.</p>\",\"PeriodicalId\":8955,\"journal\":{\"name\":\"Biological & pharmaceutical bulletin\",\"volume\":\"48 5\",\"pages\":\"721-727\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological & pharmaceutical bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/bpb.b24-00898\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b24-00898","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Systemic mRNA Delivery into the Muscle of Duchenne Muscular Dystrophy Model Mice Using Alpha-Dystroglycan Binding Peptide Modified Lipid Nanoparticles.
Duchenne muscular dystrophy (DMD) is a hereditary disease that requires gene or nucleic acid therapy, which involves muscle-targeted delivery of therapeutic material. We previously developed liposomes targeting muscle tissue in DMD model mice (mdx) using an A2G80 peptide, which has an affinity for α-dystroglycan abundantly expressed on the muscle cell membrane. However, these liposomes did not carry gene or nucleic acids. In this study, we aimed to develop muscle-targeting lipid nanoparticles (LNPs) encapsulating luciferase mRNA and evaluate gene expression levels after systemic administration of these LNPs. We first evaluated the efficiency of mRNA delivery based on luciferase activity using polyethylene glycol (PEG)-dimyristoyl glycerol (DMG) and PEG-distearoyl glycerol (DSG) in mdx systemic administration. PEG-DSG-LNPs showed lower luciferase expression in the liver and spleen and higher expression in mdx muscle tissue than PEG-DMG-LNPs. The addition of the A2G80 peptide to LNPs using PEG-DSG (A2G80-DSG-LNPs) significantly increased their activity in mdx but not in normal mice. These results suggest that A2G80-DSG-LNPs allow for muscle-targeted mRNA delivery and are useful tools for DMD treatment.
期刊介绍:
Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012.
The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.