醛氧化酶抑制剂对6-巯基嘌呤代谢影响的评价。

IF 1.7 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Hinata Ueda, Katsuya Narumi, Ayako Furugen, Keisuke Okamoto, Yoshitaka Saito, Masaki Kobayashi
{"title":"醛氧化酶抑制剂对6-巯基嘌呤代谢影响的评价。","authors":"Hinata Ueda, Katsuya Narumi, Ayako Furugen, Keisuke Okamoto, Yoshitaka Saito, Masaki Kobayashi","doi":"10.1248/bpb.b25-00083","DOIUrl":null,"url":null,"abstract":"<p><p>Thiopurines, such as 6-mercaptopurine (6-MP) and azathioprine, are converted to the inactive metabolites 6-thioxanthin (6-TX) and 6-thiouric acid (6-TUA). Molybdenum-containing oxidoreductases, aldehyde oxidase (AOX) and xanthine oxidase (XO), are involved in the oxidation of 6-MP to 6-TX; XO inhibitors affect the therapeutic efficacy of thiopurines and the incidence of adverse effects, such as liver and blood disorders. However, the role of AOX in the pharmacokinetics of 6-MP remains unclear. To clarify the clinical importance of AOX-mediated drug-drug interactions, we evaluated whether drugs that inhibit AOX affect 6-MP metabolism. The metabolism of 6-MP to 6-TX was strongly inhibited by AOX inhibitors (amitriptyline, chlorpromazine, clomipramine, clozapine, hydralazine, quetiapine, and raloxifene) in a reaction mixture containing human liver cytosol. The inhibition of 6-TX production rate by each AOX inhibitor was 60-70% at high concentrations, although the XO inhibitor febuxostat showed an inhibition rate of 10-30%. Furthermore, the combination of febuxostat and each AOX inhibitor showed greater inhibition than when each compound was added alone. The AOX inhibitor did not alter 6-MP oxidation by recombinant XO. These results suggest that AOX inhibition may affect the pharmacokinetics of thiopurines. However, because of the lower activity of AOX in rats than that in humans, the contribution of AOX could not be assessed using in vivo experiments. Further studies are needed to evaluate the contribution of AOX to the therapeutic and adverse effects of thiopurines, both in clinical studies and in animal models of liver humanization.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 5","pages":"713-720"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Effect of Aldehyde Oxidase Inhibitors on 6-Mercaptopurine Metabolism.\",\"authors\":\"Hinata Ueda, Katsuya Narumi, Ayako Furugen, Keisuke Okamoto, Yoshitaka Saito, Masaki Kobayashi\",\"doi\":\"10.1248/bpb.b25-00083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thiopurines, such as 6-mercaptopurine (6-MP) and azathioprine, are converted to the inactive metabolites 6-thioxanthin (6-TX) and 6-thiouric acid (6-TUA). Molybdenum-containing oxidoreductases, aldehyde oxidase (AOX) and xanthine oxidase (XO), are involved in the oxidation of 6-MP to 6-TX; XO inhibitors affect the therapeutic efficacy of thiopurines and the incidence of adverse effects, such as liver and blood disorders. However, the role of AOX in the pharmacokinetics of 6-MP remains unclear. To clarify the clinical importance of AOX-mediated drug-drug interactions, we evaluated whether drugs that inhibit AOX affect 6-MP metabolism. The metabolism of 6-MP to 6-TX was strongly inhibited by AOX inhibitors (amitriptyline, chlorpromazine, clomipramine, clozapine, hydralazine, quetiapine, and raloxifene) in a reaction mixture containing human liver cytosol. The inhibition of 6-TX production rate by each AOX inhibitor was 60-70% at high concentrations, although the XO inhibitor febuxostat showed an inhibition rate of 10-30%. Furthermore, the combination of febuxostat and each AOX inhibitor showed greater inhibition than when each compound was added alone. The AOX inhibitor did not alter 6-MP oxidation by recombinant XO. These results suggest that AOX inhibition may affect the pharmacokinetics of thiopurines. However, because of the lower activity of AOX in rats than that in humans, the contribution of AOX could not be assessed using in vivo experiments. Further studies are needed to evaluate the contribution of AOX to the therapeutic and adverse effects of thiopurines, both in clinical studies and in animal models of liver humanization.</p>\",\"PeriodicalId\":8955,\"journal\":{\"name\":\"Biological & pharmaceutical bulletin\",\"volume\":\"48 5\",\"pages\":\"713-720\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological & pharmaceutical bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/bpb.b25-00083\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b25-00083","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

硫嘌呤,如6-巯基嘌呤(6-MP)和硫嘌呤,转化为无活性代谢物6-硫黄嘌呤(6-TX)和6-硫脲酸(6-TUA)。含钼氧化还原酶,醛氧化酶(AOX)和黄嘌呤氧化酶(XO)参与6-MP氧化成6-TX;XO抑制剂影响硫嘌呤的治疗效果和不良反应的发生率,如肝脏和血液疾病。然而,AOX在6-MP药代动力学中的作用尚不清楚。为了阐明AOX介导的药物-药物相互作用的临床重要性,我们评估了抑制AOX的药物是否会影响6-MP代谢。在含有人肝细胞质的反应混合物中,6-MP到6-TX的代谢被AOX抑制剂(阿米替林、氯丙嗪、氯米帕明、氯氮平、肼嗪、喹硫平和雷洛昔芬)强烈抑制。虽然XO抑制剂非布司他的抑制率为10-30%,但在高浓度情况下,每种AOX抑制剂对6-TX产率的抑制率为60-70%。此外,非布司他与每种AOX抑制剂联合使用比单独使用时具有更大的抑制作用。AOX抑制剂不改变重组XO对6-MP的氧化。这些结果表明,抑制AOX可能影响硫嘌呤的药代动力学。然而,由于AOX在大鼠中的活性低于人,因此无法通过体内实验来评估AOX的贡献。在临床研究和肝脏人源化动物模型中,需要进一步的研究来评估AOX对硫嘌呤治疗和不良反应的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of the Effect of Aldehyde Oxidase Inhibitors on 6-Mercaptopurine Metabolism.

Thiopurines, such as 6-mercaptopurine (6-MP) and azathioprine, are converted to the inactive metabolites 6-thioxanthin (6-TX) and 6-thiouric acid (6-TUA). Molybdenum-containing oxidoreductases, aldehyde oxidase (AOX) and xanthine oxidase (XO), are involved in the oxidation of 6-MP to 6-TX; XO inhibitors affect the therapeutic efficacy of thiopurines and the incidence of adverse effects, such as liver and blood disorders. However, the role of AOX in the pharmacokinetics of 6-MP remains unclear. To clarify the clinical importance of AOX-mediated drug-drug interactions, we evaluated whether drugs that inhibit AOX affect 6-MP metabolism. The metabolism of 6-MP to 6-TX was strongly inhibited by AOX inhibitors (amitriptyline, chlorpromazine, clomipramine, clozapine, hydralazine, quetiapine, and raloxifene) in a reaction mixture containing human liver cytosol. The inhibition of 6-TX production rate by each AOX inhibitor was 60-70% at high concentrations, although the XO inhibitor febuxostat showed an inhibition rate of 10-30%. Furthermore, the combination of febuxostat and each AOX inhibitor showed greater inhibition than when each compound was added alone. The AOX inhibitor did not alter 6-MP oxidation by recombinant XO. These results suggest that AOX inhibition may affect the pharmacokinetics of thiopurines. However, because of the lower activity of AOX in rats than that in humans, the contribution of AOX could not be assessed using in vivo experiments. Further studies are needed to evaluate the contribution of AOX to the therapeutic and adverse effects of thiopurines, both in clinical studies and in animal models of liver humanization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.00%
发文量
247
审稿时长
2 months
期刊介绍: Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012. The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信