YAPOn/YAPOff二元肿瘤的分子基础及其治疗意义。

IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Pinky Sharma, Yale S Michaels, Joel D Pearson
{"title":"YAPOn/YAPOff二元肿瘤的分子基础及其治疗意义。","authors":"Pinky Sharma, Yale S Michaels, Joel D Pearson","doi":"10.1042/BCJ20253077","DOIUrl":null,"url":null,"abstract":"<p><p>Cancers have traditionally been classified based on their tissue of origin. However, with advances in sophisticated genome sequencing techniques and progression toward an era of precision medicine, it has become increasingly clear that classifying tumors based on unifying molecular features instead of tissue of origin may hold the key to improving patient outcomes. Various efforts have been undertaken to address this critical aspect of cancer biology, but it is still unclear as to the best approach to stratify tumors into different molecular classes. One approach is to define many small subclasses based on complex molecular signatures, while another option is to divide cancers into larger groups based on higher-order features of cancer behavior. This latter approach holds appeal as it may provide opportunities to identify broadly relevant therapeutics. However, our understanding of these fundamental 'rules' of cancer biology and how they can be used to better classify and treat cancers is in its infancy. We recently demonstrated that cancers can be functionally stratified into binary YAPon and YAPoff super-classes with unique therapeutic vulnerabilities based on distinct expression and function of the transcriptional coactivators, YAP and TAZ. In YAPon cancers, YAP and TAZ drive oncogenesis, whereas in YAPoff cancers, YAP and TAZ are instead tumor suppressors. In this review, we discuss our understanding of these distinct cancer classes with a focus on the mechanisms that underlie the opposite function of YAP/TAZ in YAPon and YAPoff cancers, as well as the potential therapeutic implications of these findings.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"482 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular basis and therapeutic implications of binary YAPOn/YAPOff cancer classes.\",\"authors\":\"Pinky Sharma, Yale S Michaels, Joel D Pearson\",\"doi\":\"10.1042/BCJ20253077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancers have traditionally been classified based on their tissue of origin. However, with advances in sophisticated genome sequencing techniques and progression toward an era of precision medicine, it has become increasingly clear that classifying tumors based on unifying molecular features instead of tissue of origin may hold the key to improving patient outcomes. Various efforts have been undertaken to address this critical aspect of cancer biology, but it is still unclear as to the best approach to stratify tumors into different molecular classes. One approach is to define many small subclasses based on complex molecular signatures, while another option is to divide cancers into larger groups based on higher-order features of cancer behavior. This latter approach holds appeal as it may provide opportunities to identify broadly relevant therapeutics. However, our understanding of these fundamental 'rules' of cancer biology and how they can be used to better classify and treat cancers is in its infancy. We recently demonstrated that cancers can be functionally stratified into binary YAPon and YAPoff super-classes with unique therapeutic vulnerabilities based on distinct expression and function of the transcriptional coactivators, YAP and TAZ. In YAPon cancers, YAP and TAZ drive oncogenesis, whereas in YAPoff cancers, YAP and TAZ are instead tumor suppressors. In this review, we discuss our understanding of these distinct cancer classes with a focus on the mechanisms that underlie the opposite function of YAP/TAZ in YAPon and YAPoff cancers, as well as the potential therapeutic implications of these findings.</p>\",\"PeriodicalId\":8825,\"journal\":{\"name\":\"Biochemical Journal\",\"volume\":\"482 11\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BCJ20253077\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20253077","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

传统上,癌症是根据其起源组织进行分类的。然而,随着复杂的基因组测序技术的进步和精准医学时代的发展,越来越清楚的是,基于统一的分子特征而不是组织起源对肿瘤进行分类可能是改善患者预后的关键。人们已经做出了各种努力来解决癌症生物学的这一关键问题,但目前尚不清楚将肿瘤分层为不同分子类别的最佳方法。一种方法是根据复杂的分子特征定义许多小的亚类,而另一种选择是根据癌症行为的高阶特征将癌症划分为更大的组。后一种方法具有吸引力,因为它可能为确定广泛相关的治疗方法提供机会。然而,我们对癌症生物学的这些基本“规则”以及如何利用它们更好地分类和治疗癌症的理解还处于起步阶段。我们最近证明,基于转录共激活因子YAP和TAZ的不同表达和功能,癌症可以在功能上分层为具有独特治疗脆弱性的二元YAPon和YAPoff超类。在YAPon癌症中,YAP和TAZ驱动肿瘤发生,而在YAPoff癌症中,YAP和TAZ反而是肿瘤抑制因子。在这篇综述中,我们讨论了我们对这些不同类型癌症的理解,重点是YAP/TAZ在YAPon和YAPoff癌症中相反功能的机制,以及这些发现的潜在治疗意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular basis and therapeutic implications of binary YAPOn/YAPOff cancer classes.

Cancers have traditionally been classified based on their tissue of origin. However, with advances in sophisticated genome sequencing techniques and progression toward an era of precision medicine, it has become increasingly clear that classifying tumors based on unifying molecular features instead of tissue of origin may hold the key to improving patient outcomes. Various efforts have been undertaken to address this critical aspect of cancer biology, but it is still unclear as to the best approach to stratify tumors into different molecular classes. One approach is to define many small subclasses based on complex molecular signatures, while another option is to divide cancers into larger groups based on higher-order features of cancer behavior. This latter approach holds appeal as it may provide opportunities to identify broadly relevant therapeutics. However, our understanding of these fundamental 'rules' of cancer biology and how they can be used to better classify and treat cancers is in its infancy. We recently demonstrated that cancers can be functionally stratified into binary YAPon and YAPoff super-classes with unique therapeutic vulnerabilities based on distinct expression and function of the transcriptional coactivators, YAP and TAZ. In YAPon cancers, YAP and TAZ drive oncogenesis, whereas in YAPoff cancers, YAP and TAZ are instead tumor suppressors. In this review, we discuss our understanding of these distinct cancer classes with a focus on the mechanisms that underlie the opposite function of YAP/TAZ in YAPon and YAPoff cancers, as well as the potential therapeutic implications of these findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Journal
Biochemical Journal 生物-生化与分子生物学
CiteScore
8.00
自引率
0.00%
发文量
255
审稿时长
1 months
期刊介绍: Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology. The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed. Painless publishing: All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for. Areas covered in the journal include: Cell biology Chemical biology Energy processes Gene expression and regulation Mechanisms of disease Metabolism Molecular structure and function Plant biology Signalling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信