{"title":"儿童癌症遗传学和基因组学。","authors":"Elaine R Mardis","doi":"10.1146/annurev-genom-120823-010156","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular profiling of DNA and RNA from pediatric cancers by next-generation sequencing has been demonstrated to improve diagnosis and prognosis and to identify somatic alterations indicating vulnerability to targeted therapies. Hence, much like in the treatment of adult cancers, molecular profiling is now routinely utilized in clinical workflows for pediatric cancers as a companion to conventional pathology diagnosis. Many variants of unknown significance identified through DNA profiling are being characterized by saturation genome editing, enabled by CRISPR editing technology and clever functional assays. Newer technologies and analytics are revealing additional structural complexity around cancer drivers and gene fusions in pediatric cancer DNA. Similarly, computational methods such as rare variant association studies and polygenic risk scoring are being used to identify novel cancer susceptibility. Together, these advances are expanding our understanding of pediatric cancer's complexity and fueling the development of emerging methods such as liquid biopsy-based monitoring.</p>","PeriodicalId":8231,"journal":{"name":"Annual review of genomics and human genetics","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pediatric Cancer Genetics and Genomics.\",\"authors\":\"Elaine R Mardis\",\"doi\":\"10.1146/annurev-genom-120823-010156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molecular profiling of DNA and RNA from pediatric cancers by next-generation sequencing has been demonstrated to improve diagnosis and prognosis and to identify somatic alterations indicating vulnerability to targeted therapies. Hence, much like in the treatment of adult cancers, molecular profiling is now routinely utilized in clinical workflows for pediatric cancers as a companion to conventional pathology diagnosis. Many variants of unknown significance identified through DNA profiling are being characterized by saturation genome editing, enabled by CRISPR editing technology and clever functional assays. Newer technologies and analytics are revealing additional structural complexity around cancer drivers and gene fusions in pediatric cancer DNA. Similarly, computational methods such as rare variant association studies and polygenic risk scoring are being used to identify novel cancer susceptibility. Together, these advances are expanding our understanding of pediatric cancer's complexity and fueling the development of emerging methods such as liquid biopsy-based monitoring.</p>\",\"PeriodicalId\":8231,\"journal\":{\"name\":\"Annual review of genomics and human genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of genomics and human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-genom-120823-010156\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genomics and human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genom-120823-010156","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Molecular profiling of DNA and RNA from pediatric cancers by next-generation sequencing has been demonstrated to improve diagnosis and prognosis and to identify somatic alterations indicating vulnerability to targeted therapies. Hence, much like in the treatment of adult cancers, molecular profiling is now routinely utilized in clinical workflows for pediatric cancers as a companion to conventional pathology diagnosis. Many variants of unknown significance identified through DNA profiling are being characterized by saturation genome editing, enabled by CRISPR editing technology and clever functional assays. Newer technologies and analytics are revealing additional structural complexity around cancer drivers and gene fusions in pediatric cancer DNA. Similarly, computational methods such as rare variant association studies and polygenic risk scoring are being used to identify novel cancer susceptibility. Together, these advances are expanding our understanding of pediatric cancer's complexity and fueling the development of emerging methods such as liquid biopsy-based monitoring.
期刊介绍:
Since its inception in 2000, the Annual Review of Genomics and Human Genetics has been dedicated to showcasing significant developments in genomics as they pertain to human genetics and the human genome. The journal emphasizes genomic technology, genome structure and function, genetic modification, human variation and population genetics, human evolution, and various aspects of human genetic diseases, including individualized medicine.