Martin Simoneit, Helene Langer, Nadin Ulrich, Alexander Böhme
{"title":"改进基于氨基反应性的呼吸致敏剂鉴定。","authors":"Martin Simoneit, Helene Langer, Nadin Ulrich, Alexander Böhme","doi":"10.1021/acs.chemrestox.4c00545","DOIUrl":null,"url":null,"abstract":"<p><p>The sensitization of the respiratory tract may lead to various pulmonary diseases such as asthma. It can be triggered by the chemical reaction of organic electrophiles with nucleophiles of lung proteins with amino groups being of particular interest in this case. For assessing the dermal sensitization potential of chemicals, the direct peptide reactivity assay (DPRA) has become an OECD-accepted nonanimal test system. However, issues with the identification of known respiratory sensitizers such as isocyanates and anhydrides based on their amino reactivity in the DPRA have been reported. Hence, in this study the chemoassay employing glycine-<i>para</i>-nitroanilide (Gly-pNA) as model nucleophile is applied to eight iso(thio)cyanates, seven anhydrides, four dinitrobenzenes, one triazine, five acrylates, glutaraldehyde, and chloramine T to quantify their amino reactivity in terms of the second order rate constant <i>k</i><sub>Gly</sub> and the DPRA-like 24 h percent depletion <i>D</i><sub>Gly</sub>. A comparison of <i>D</i><sub>Gly</sub> with respective DPRA amino reactivity data (<i>D</i><sub>DPRA</sub>) showed that in particular iso(thio)cyanates and anhydrides are substantially more reactive toward Gly-pNA. This can be rationalized by the unintentional and so far not considered reaction of the test compounds with the ammonium acetate buffer used for DPRA testing. A detailed analysis of this reaction includes half-lives and analytically determined adduct patterns and indicates that it can hamper the envisaged depletion of the DPRA amino nucleophile. Finally, the obtained log <i>k</i><sub>Gly</sub> values range from -3.73 to ≥ 4.52 and allow for an improved identification of respiratory sensitizers. Hence, the Gly-pNA chemoassay may serve as a nonanimal screening method as one part of a mechanism-informed integrated testing and assessment strategy for respiratory sensitizers.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refining the Amino Reactivity-Based Identification of Respiratory Sensitizers.\",\"authors\":\"Martin Simoneit, Helene Langer, Nadin Ulrich, Alexander Böhme\",\"doi\":\"10.1021/acs.chemrestox.4c00545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sensitization of the respiratory tract may lead to various pulmonary diseases such as asthma. It can be triggered by the chemical reaction of organic electrophiles with nucleophiles of lung proteins with amino groups being of particular interest in this case. For assessing the dermal sensitization potential of chemicals, the direct peptide reactivity assay (DPRA) has become an OECD-accepted nonanimal test system. However, issues with the identification of known respiratory sensitizers such as isocyanates and anhydrides based on their amino reactivity in the DPRA have been reported. Hence, in this study the chemoassay employing glycine-<i>para</i>-nitroanilide (Gly-pNA) as model nucleophile is applied to eight iso(thio)cyanates, seven anhydrides, four dinitrobenzenes, one triazine, five acrylates, glutaraldehyde, and chloramine T to quantify their amino reactivity in terms of the second order rate constant <i>k</i><sub>Gly</sub> and the DPRA-like 24 h percent depletion <i>D</i><sub>Gly</sub>. A comparison of <i>D</i><sub>Gly</sub> with respective DPRA amino reactivity data (<i>D</i><sub>DPRA</sub>) showed that in particular iso(thio)cyanates and anhydrides are substantially more reactive toward Gly-pNA. This can be rationalized by the unintentional and so far not considered reaction of the test compounds with the ammonium acetate buffer used for DPRA testing. A detailed analysis of this reaction includes half-lives and analytically determined adduct patterns and indicates that it can hamper the envisaged depletion of the DPRA amino nucleophile. Finally, the obtained log <i>k</i><sub>Gly</sub> values range from -3.73 to ≥ 4.52 and allow for an improved identification of respiratory sensitizers. Hence, the Gly-pNA chemoassay may serve as a nonanimal screening method as one part of a mechanism-informed integrated testing and assessment strategy for respiratory sensitizers.</p>\",\"PeriodicalId\":31,\"journal\":{\"name\":\"Chemical Research in Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemrestox.4c00545\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00545","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Refining the Amino Reactivity-Based Identification of Respiratory Sensitizers.
The sensitization of the respiratory tract may lead to various pulmonary diseases such as asthma. It can be triggered by the chemical reaction of organic electrophiles with nucleophiles of lung proteins with amino groups being of particular interest in this case. For assessing the dermal sensitization potential of chemicals, the direct peptide reactivity assay (DPRA) has become an OECD-accepted nonanimal test system. However, issues with the identification of known respiratory sensitizers such as isocyanates and anhydrides based on their amino reactivity in the DPRA have been reported. Hence, in this study the chemoassay employing glycine-para-nitroanilide (Gly-pNA) as model nucleophile is applied to eight iso(thio)cyanates, seven anhydrides, four dinitrobenzenes, one triazine, five acrylates, glutaraldehyde, and chloramine T to quantify their amino reactivity in terms of the second order rate constant kGly and the DPRA-like 24 h percent depletion DGly. A comparison of DGly with respective DPRA amino reactivity data (DDPRA) showed that in particular iso(thio)cyanates and anhydrides are substantially more reactive toward Gly-pNA. This can be rationalized by the unintentional and so far not considered reaction of the test compounds with the ammonium acetate buffer used for DPRA testing. A detailed analysis of this reaction includes half-lives and analytically determined adduct patterns and indicates that it can hamper the envisaged depletion of the DPRA amino nucleophile. Finally, the obtained log kGly values range from -3.73 to ≥ 4.52 and allow for an improved identification of respiratory sensitizers. Hence, the Gly-pNA chemoassay may serve as a nonanimal screening method as one part of a mechanism-informed integrated testing and assessment strategy for respiratory sensitizers.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.