多组学网络方法揭示先天性代谢错误的疾病修饰机制

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Aaron Bender, Pablo Ranea-Robles, Evan G. Williams, Mina Mirzaian, J. Alexander Heimel, Christiaan N. Levelt, Ronald J. Wanders, Johannes M. Aerts, Jun Zhu, Johan Auwerx, Sander M. Houten, Carmen A. Argmann
{"title":"多组学网络方法揭示先天性代谢错误的疾病修饰机制","authors":"Aaron Bender,&nbsp;Pablo Ranea-Robles,&nbsp;Evan G. Williams,&nbsp;Mina Mirzaian,&nbsp;J. Alexander Heimel,&nbsp;Christiaan N. Levelt,&nbsp;Ronald J. Wanders,&nbsp;Johannes M. Aerts,&nbsp;Jun Zhu,&nbsp;Johan Auwerx,&nbsp;Sander M. Houten,&nbsp;Carmen A. Argmann","doi":"10.1002/jimd.70045","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For many inborn errors of metabolism (IEM) the understanding of disease mechanisms remains limited, in part explaining their unmet medical needs. The expressivity of IEM disease phenotypes is affected by disease-modifying factors, including rare and common polygenic variation. We hypothesize that we can identify these modulating pathways using molecular signatures of IEM in combination with multiomic data and gene regulatory networks generated from non-IEM animal and human populations. We tested this approach by identifying and subsequently validating glucocorticoid signaling as a candidate modifier of mitochondrial fatty acid oxidation disorders, and recapitulating complement signaling as a modifier of inflammation in Gaucher disease. Our work describes a novel approach that can overcome the rare disease–rare data dilemma and reveal new IEM pathophysiology and potential drug targets using multiomics data in seemingly healthy populations.</p>\n </div>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":"48 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multiomic Network Approach to Uncover Disease Modifying Mechanisms of Inborn Errors of Metabolism\",\"authors\":\"Aaron Bender,&nbsp;Pablo Ranea-Robles,&nbsp;Evan G. Williams,&nbsp;Mina Mirzaian,&nbsp;J. Alexander Heimel,&nbsp;Christiaan N. Levelt,&nbsp;Ronald J. Wanders,&nbsp;Johannes M. Aerts,&nbsp;Jun Zhu,&nbsp;Johan Auwerx,&nbsp;Sander M. Houten,&nbsp;Carmen A. Argmann\",\"doi\":\"10.1002/jimd.70045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>For many inborn errors of metabolism (IEM) the understanding of disease mechanisms remains limited, in part explaining their unmet medical needs. The expressivity of IEM disease phenotypes is affected by disease-modifying factors, including rare and common polygenic variation. We hypothesize that we can identify these modulating pathways using molecular signatures of IEM in combination with multiomic data and gene regulatory networks generated from non-IEM animal and human populations. We tested this approach by identifying and subsequently validating glucocorticoid signaling as a candidate modifier of mitochondrial fatty acid oxidation disorders, and recapitulating complement signaling as a modifier of inflammation in Gaucher disease. Our work describes a novel approach that can overcome the rare disease–rare data dilemma and reveal new IEM pathophysiology and potential drug targets using multiomics data in seemingly healthy populations.</p>\\n </div>\",\"PeriodicalId\":16281,\"journal\":{\"name\":\"Journal of Inherited Metabolic Disease\",\"volume\":\"48 4\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inherited Metabolic Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jimd.70045\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inherited Metabolic Disease","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jimd.70045","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

对于许多先天性代谢错误(IEM),人们对疾病机制的理解仍然有限,这在一定程度上解释了它们未得到满足的医疗需求。IEM疾病表型的表达性受到疾病修饰因素的影响,包括罕见和常见的多基因变异。我们假设我们可以利用IEM的分子特征,结合多组学数据和非IEM动物和人类群体产生的基因调控网络来识别这些调节途径。我们通过识别并随后验证糖皮质激素信号作为线粒体脂肪酸氧化障碍的候选修饰剂,并概述补体信号作为戈谢病炎症的修饰剂,来测试这种方法。我们的工作描述了一种新的方法,可以克服罕见病-罕见数据困境,并利用看似健康的人群中的多组学数据揭示新的IEM病理生理和潜在的药物靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multiomic Network Approach to Uncover Disease Modifying Mechanisms of Inborn Errors of Metabolism

For many inborn errors of metabolism (IEM) the understanding of disease mechanisms remains limited, in part explaining their unmet medical needs. The expressivity of IEM disease phenotypes is affected by disease-modifying factors, including rare and common polygenic variation. We hypothesize that we can identify these modulating pathways using molecular signatures of IEM in combination with multiomic data and gene regulatory networks generated from non-IEM animal and human populations. We tested this approach by identifying and subsequently validating glucocorticoid signaling as a candidate modifier of mitochondrial fatty acid oxidation disorders, and recapitulating complement signaling as a modifier of inflammation in Gaucher disease. Our work describes a novel approach that can overcome the rare disease–rare data dilemma and reveal new IEM pathophysiology and potential drug targets using multiomics data in seemingly healthy populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inherited Metabolic Disease
Journal of Inherited Metabolic Disease 医学-内分泌学与代谢
CiteScore
9.50
自引率
7.10%
发文量
117
审稿时长
4-8 weeks
期刊介绍: The Journal of Inherited Metabolic Disease (JIMD) is the official journal of the Society for the Study of Inborn Errors of Metabolism (SSIEM). By enhancing communication between workers in the field throughout the world, the JIMD aims to improve the management and understanding of inherited metabolic disorders. It publishes results of original research and new or important observations pertaining to any aspect of inherited metabolic disease in humans and higher animals. This includes clinical (medical, dental and veterinary), biochemical, genetic (including cytogenetic, molecular and population genetic), experimental (including cell biological), methodological, theoretical, epidemiological, ethical and counselling aspects. The JIMD also reviews important new developments or controversial issues relating to metabolic disorders and publishes reviews and short reports arising from the Society''s annual symposia. A distinction is made between peer-reviewed scientific material that is selected because of its significance for other professionals in the field and non-peer- reviewed material that aims to be important, controversial, interesting or entertaining (“Extras”).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信