Aaron Bender, Pablo Ranea-Robles, Evan G. Williams, Mina Mirzaian, J. Alexander Heimel, Christiaan N. Levelt, Ronald J. Wanders, Johannes M. Aerts, Jun Zhu, Johan Auwerx, Sander M. Houten, Carmen A. Argmann
{"title":"多组学网络方法揭示先天性代谢错误的疾病修饰机制","authors":"Aaron Bender, Pablo Ranea-Robles, Evan G. Williams, Mina Mirzaian, J. Alexander Heimel, Christiaan N. Levelt, Ronald J. Wanders, Johannes M. Aerts, Jun Zhu, Johan Auwerx, Sander M. Houten, Carmen A. Argmann","doi":"10.1002/jimd.70045","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For many inborn errors of metabolism (IEM) the understanding of disease mechanisms remains limited, in part explaining their unmet medical needs. The expressivity of IEM disease phenotypes is affected by disease-modifying factors, including rare and common polygenic variation. We hypothesize that we can identify these modulating pathways using molecular signatures of IEM in combination with multiomic data and gene regulatory networks generated from non-IEM animal and human populations. We tested this approach by identifying and subsequently validating glucocorticoid signaling as a candidate modifier of mitochondrial fatty acid oxidation disorders, and recapitulating complement signaling as a modifier of inflammation in Gaucher disease. Our work describes a novel approach that can overcome the rare disease–rare data dilemma and reveal new IEM pathophysiology and potential drug targets using multiomics data in seemingly healthy populations.</p>\n </div>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":"48 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multiomic Network Approach to Uncover Disease Modifying Mechanisms of Inborn Errors of Metabolism\",\"authors\":\"Aaron Bender, Pablo Ranea-Robles, Evan G. Williams, Mina Mirzaian, J. Alexander Heimel, Christiaan N. Levelt, Ronald J. Wanders, Johannes M. Aerts, Jun Zhu, Johan Auwerx, Sander M. Houten, Carmen A. Argmann\",\"doi\":\"10.1002/jimd.70045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>For many inborn errors of metabolism (IEM) the understanding of disease mechanisms remains limited, in part explaining their unmet medical needs. The expressivity of IEM disease phenotypes is affected by disease-modifying factors, including rare and common polygenic variation. We hypothesize that we can identify these modulating pathways using molecular signatures of IEM in combination with multiomic data and gene regulatory networks generated from non-IEM animal and human populations. We tested this approach by identifying and subsequently validating glucocorticoid signaling as a candidate modifier of mitochondrial fatty acid oxidation disorders, and recapitulating complement signaling as a modifier of inflammation in Gaucher disease. Our work describes a novel approach that can overcome the rare disease–rare data dilemma and reveal new IEM pathophysiology and potential drug targets using multiomics data in seemingly healthy populations.</p>\\n </div>\",\"PeriodicalId\":16281,\"journal\":{\"name\":\"Journal of Inherited Metabolic Disease\",\"volume\":\"48 4\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inherited Metabolic Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jimd.70045\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inherited Metabolic Disease","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jimd.70045","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
A Multiomic Network Approach to Uncover Disease Modifying Mechanisms of Inborn Errors of Metabolism
For many inborn errors of metabolism (IEM) the understanding of disease mechanisms remains limited, in part explaining their unmet medical needs. The expressivity of IEM disease phenotypes is affected by disease-modifying factors, including rare and common polygenic variation. We hypothesize that we can identify these modulating pathways using molecular signatures of IEM in combination with multiomic data and gene regulatory networks generated from non-IEM animal and human populations. We tested this approach by identifying and subsequently validating glucocorticoid signaling as a candidate modifier of mitochondrial fatty acid oxidation disorders, and recapitulating complement signaling as a modifier of inflammation in Gaucher disease. Our work describes a novel approach that can overcome the rare disease–rare data dilemma and reveal new IEM pathophysiology and potential drug targets using multiomics data in seemingly healthy populations.
期刊介绍:
The Journal of Inherited Metabolic Disease (JIMD) is the official journal of the Society for the Study of Inborn Errors of Metabolism (SSIEM). By enhancing communication between workers in the field throughout the world, the JIMD aims to improve the management and understanding of inherited metabolic disorders. It publishes results of original research and new or important observations pertaining to any aspect of inherited metabolic disease in humans and higher animals. This includes clinical (medical, dental and veterinary), biochemical, genetic (including cytogenetic, molecular and population genetic), experimental (including cell biological), methodological, theoretical, epidemiological, ethical and counselling aspects. The JIMD also reviews important new developments or controversial issues relating to metabolic disorders and publishes reviews and short reports arising from the Society''s annual symposia. A distinction is made between peer-reviewed scientific material that is selected because of its significance for other professionals in the field and non-peer- reviewed material that aims to be important, controversial, interesting or entertaining (“Extras”).