{"title":"通过双向自回归扩散模型的精确运动中间","authors":"Jiawen Peng, Zhuoran Liu, Jingzhong Lin, Gaoqi He","doi":"10.1002/cav.70040","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Conditional motion diffusion models have demonstrated significant potential in generating natural and reasonable motions response to constraints such as keyframes, that can be used for motion inbetweening task. However, most methods struggle to match the keyframe constraints accurately, which resulting in unsmooth transitions between keyframes and generated motion. In this article, we propose Bidirectional Autoregressive Motion Diffusion Inbetweening (BAMDI) to generate seamless motion between start and target frames. The main idea is to transfer the motion diffusion model to autoregressive paradigm, which predicts subsequence of motion adjacent to both start and target keyframes to infill the missing frames through several iterations. This can help to improve the local consistency of generated motion. Additionally, bidirectional generation make sure the smoothness on both start frame target keyframes. Experiments show our method achieves state-of-the-art performance compared with other diffusion-based motion inbetweening methods.</p>\n </div>","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"36 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise Motion Inbetweening via Bidirectional Autoregressive Diffusion Models\",\"authors\":\"Jiawen Peng, Zhuoran Liu, Jingzhong Lin, Gaoqi He\",\"doi\":\"10.1002/cav.70040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Conditional motion diffusion models have demonstrated significant potential in generating natural and reasonable motions response to constraints such as keyframes, that can be used for motion inbetweening task. However, most methods struggle to match the keyframe constraints accurately, which resulting in unsmooth transitions between keyframes and generated motion. In this article, we propose Bidirectional Autoregressive Motion Diffusion Inbetweening (BAMDI) to generate seamless motion between start and target frames. The main idea is to transfer the motion diffusion model to autoregressive paradigm, which predicts subsequence of motion adjacent to both start and target keyframes to infill the missing frames through several iterations. This can help to improve the local consistency of generated motion. Additionally, bidirectional generation make sure the smoothness on both start frame target keyframes. Experiments show our method achieves state-of-the-art performance compared with other diffusion-based motion inbetweening methods.</p>\\n </div>\",\"PeriodicalId\":50645,\"journal\":{\"name\":\"Computer Animation and Virtual Worlds\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Animation and Virtual Worlds\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cav.70040\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cav.70040","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Precise Motion Inbetweening via Bidirectional Autoregressive Diffusion Models
Conditional motion diffusion models have demonstrated significant potential in generating natural and reasonable motions response to constraints such as keyframes, that can be used for motion inbetweening task. However, most methods struggle to match the keyframe constraints accurately, which resulting in unsmooth transitions between keyframes and generated motion. In this article, we propose Bidirectional Autoregressive Motion Diffusion Inbetweening (BAMDI) to generate seamless motion between start and target frames. The main idea is to transfer the motion diffusion model to autoregressive paradigm, which predicts subsequence of motion adjacent to both start and target keyframes to infill the missing frames through several iterations. This can help to improve the local consistency of generated motion. Additionally, bidirectional generation make sure the smoothness on both start frame target keyframes. Experiments show our method achieves state-of-the-art performance compared with other diffusion-based motion inbetweening methods.
期刊介绍:
With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.