接触电催化使超声合成金纳米颗粒在水-聚四氟乙烯界面

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2025-04-20 DOI:10.1002/cnma.202500050
Hui Yan, Xiaoxue Song, Shun Li, Jianhua Li, Jianming Zhang, Yuqiao Zhang, Long Zhang
{"title":"接触电催化使超声合成金纳米颗粒在水-聚四氟乙烯界面","authors":"Hui Yan,&nbsp;Xiaoxue Song,&nbsp;Shun Li,&nbsp;Jianhua Li,&nbsp;Jianming Zhang,&nbsp;Yuqiao Zhang,&nbsp;Long Zhang","doi":"10.1002/cnma.202500050","DOIUrl":null,"url":null,"abstract":"<p>The synthesis of gold nanoparticles (AuNP) using sustainable methods remains a significant challenge in nanotechnology. Traditional approaches often rely on toxic chemicals or complex procedures, leading to unavoidable environmental concerns. Herein, a novel, environmentally friendly method for preparing AuNP via contact-electro-catalysis (CEC) driven by ultrasonication at the water–dielectrics interfaces is presented. This strategy eliminates the need for external chemical reducing agents, making it a sustainable alternative for nanoparticle production. Under ultrasonic stimulation at 40 kHz and 150 W, polytetrafluoroethylene (PTFE) transfers electrons to AuCl<sub>4</sub><sup>−</sup> ions, effectively reducing them to elemental gold. The mean size of AuNP increases from 74 to 220 nm as ultrasonication duration extends from 1 to 20 min, highlighting the impact of contact duration on nanoparticle growth. A comparative study of dielectric materials, including Nylon-6, polyvinylidene difluoride, and PTFE, reveals that PTFE with its higher electron affinity greatly outperforms other materials in facilitating the electron transfer necessary for the synthesis of AuNP. Additionally, the presence of H<sub>2</sub>O<sub>2</sub> generated during the process also contributes to the reduction, further boosting AuNP synthesis. Herein, it offers insights into the influence of dielectric materials on CEC efficiency, providing a promising, scalable, and green alternative for nanoparticle production.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact-Electro-Catalysis Enables Ultrasonic Synthesis of Gold Nanoparticles at Water–PTFE Interfaces\",\"authors\":\"Hui Yan,&nbsp;Xiaoxue Song,&nbsp;Shun Li,&nbsp;Jianhua Li,&nbsp;Jianming Zhang,&nbsp;Yuqiao Zhang,&nbsp;Long Zhang\",\"doi\":\"10.1002/cnma.202500050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The synthesis of gold nanoparticles (AuNP) using sustainable methods remains a significant challenge in nanotechnology. Traditional approaches often rely on toxic chemicals or complex procedures, leading to unavoidable environmental concerns. Herein, a novel, environmentally friendly method for preparing AuNP via contact-electro-catalysis (CEC) driven by ultrasonication at the water–dielectrics interfaces is presented. This strategy eliminates the need for external chemical reducing agents, making it a sustainable alternative for nanoparticle production. Under ultrasonic stimulation at 40 kHz and 150 W, polytetrafluoroethylene (PTFE) transfers electrons to AuCl<sub>4</sub><sup>−</sup> ions, effectively reducing them to elemental gold. The mean size of AuNP increases from 74 to 220 nm as ultrasonication duration extends from 1 to 20 min, highlighting the impact of contact duration on nanoparticle growth. A comparative study of dielectric materials, including Nylon-6, polyvinylidene difluoride, and PTFE, reveals that PTFE with its higher electron affinity greatly outperforms other materials in facilitating the electron transfer necessary for the synthesis of AuNP. Additionally, the presence of H<sub>2</sub>O<sub>2</sub> generated during the process also contributes to the reduction, further boosting AuNP synthesis. Herein, it offers insights into the influence of dielectric materials on CEC efficiency, providing a promising, scalable, and green alternative for nanoparticle production.</p>\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"11 5\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://aces.onlinelibrary.wiley.com/doi/10.1002/cnma.202500050\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://aces.onlinelibrary.wiley.com/doi/10.1002/cnma.202500050","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用可持续的方法合成金纳米颗粒(AuNP)仍然是纳米技术中的一个重大挑战。传统的方法往往依赖于有毒化学品或复杂的程序,导致不可避免的环境问题。本文提出了一种新型、环保的水介质界面超声驱动接触电催化(CEC)法制备AuNP的方法。该策略消除了对外部化学还原剂的需求,使其成为纳米颗粒生产的可持续替代方案。在40 kHz和150 W的超声刺激下,聚四氟乙烯(PTFE)将电子转移到AuCl4 -离子上,有效地将其还原为单质金。超声作用时间从1分钟延长到20分钟,AuNP的平均尺寸从74 nm增加到220 nm,突出了接触时间对纳米颗粒生长的影响。通过对尼龙-6、聚偏氟乙烯和聚四氟乙烯等介质材料的对比研究,发现具有较高电子亲和力的聚四氟乙烯在促进AuNP合成所需的电子转移方面大大优于其他材料。此外,过程中产生的H2O2的存在也有助于还原,进一步促进了AuNP的合成。在此,它提供了介电材料对CEC效率的影响的见解,为纳米颗粒生产提供了一个有前途的、可扩展的和绿色的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Contact-Electro-Catalysis Enables Ultrasonic Synthesis of Gold Nanoparticles at Water–PTFE Interfaces

Contact-Electro-Catalysis Enables Ultrasonic Synthesis of Gold Nanoparticles at Water–PTFE Interfaces

Contact-Electro-Catalysis Enables Ultrasonic Synthesis of Gold Nanoparticles at Water–PTFE Interfaces

Contact-Electro-Catalysis Enables Ultrasonic Synthesis of Gold Nanoparticles at Water–PTFE Interfaces

The synthesis of gold nanoparticles (AuNP) using sustainable methods remains a significant challenge in nanotechnology. Traditional approaches often rely on toxic chemicals or complex procedures, leading to unavoidable environmental concerns. Herein, a novel, environmentally friendly method for preparing AuNP via contact-electro-catalysis (CEC) driven by ultrasonication at the water–dielectrics interfaces is presented. This strategy eliminates the need for external chemical reducing agents, making it a sustainable alternative for nanoparticle production. Under ultrasonic stimulation at 40 kHz and 150 W, polytetrafluoroethylene (PTFE) transfers electrons to AuCl4 ions, effectively reducing them to elemental gold. The mean size of AuNP increases from 74 to 220 nm as ultrasonication duration extends from 1 to 20 min, highlighting the impact of contact duration on nanoparticle growth. A comparative study of dielectric materials, including Nylon-6, polyvinylidene difluoride, and PTFE, reveals that PTFE with its higher electron affinity greatly outperforms other materials in facilitating the electron transfer necessary for the synthesis of AuNP. Additionally, the presence of H2O2 generated during the process also contributes to the reduction, further boosting AuNP synthesis. Herein, it offers insights into the influence of dielectric materials on CEC efficiency, providing a promising, scalable, and green alternative for nanoparticle production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信