用于超级电容器性能的FeNiCoSe纳米结构电极的单步合成

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2025-04-28 DOI:10.1002/cnma.202400635
Trupti Tanaya Mishra, Mohua Chakraborty, Chintak Kamalesh Parashar, Partho Sarathi Gooh Pattader, Franco Mayanglambam, Dhrubojyoti Roy
{"title":"用于超级电容器性能的FeNiCoSe纳米结构电极的单步合成","authors":"Trupti Tanaya Mishra,&nbsp;Mohua Chakraborty,&nbsp;Chintak Kamalesh Parashar,&nbsp;Partho Sarathi Gooh Pattader,&nbsp;Franco Mayanglambam,&nbsp;Dhrubojyoti Roy","doi":"10.1002/cnma.202400635","DOIUrl":null,"url":null,"abstract":"<p>The present study investigates the impact of incorporating iron (Fe) into nickel cobalt selenides (NiCoSe) to develop an advanced anode electrode material for supercapacitors. Multicomponent iron-nickel-cobalt-selenides (FeNiCoSe) nanostructures are synthesized using a single-step selenization process with varying iron content substituting nickel. The optimized FeNiCoSe, with 75% Fe substitution in NiCoSe electrode, demonstrates a high specific capacitance of 1442.2 F g<sup>−1</sup> at current density of 1 A g<sup>−1</sup> along with a long-term durability and 82.1% capacitance retention rate after 10,000 cycles. The electrode exhibits stable performance across a broad voltage range of 0.0–0.8 V. Brunauer–Emmett–Teller analysis reveals a specific surface area of 79.27 m<sup>2</sup> g<sup>−1</sup> and a pore diameter of 3.155 nm of the materials, indicating substantial surface area and porosity conducive to enhanced electrochemical activity. The incorporation of Fe into NiCoSe enhances the charge transfer and increases the availability of electroactive sites, leading to improved electronic conductivity and faster charge–discharge kinetics. The synergetic effect of multimetallic components is a key factor in achieving improved performance of the FeNiCoSe electrode material compared to bimetallic electrode materials NiCoSe and FeCoSe. The findings highlight the potential of FeNiCoSe electrode material as high-performance supercapacitors.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Step Synthesis of FeNiCoSe Nanoarchitecture Electrode for Supercapacitor Performance\",\"authors\":\"Trupti Tanaya Mishra,&nbsp;Mohua Chakraborty,&nbsp;Chintak Kamalesh Parashar,&nbsp;Partho Sarathi Gooh Pattader,&nbsp;Franco Mayanglambam,&nbsp;Dhrubojyoti Roy\",\"doi\":\"10.1002/cnma.202400635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study investigates the impact of incorporating iron (Fe) into nickel cobalt selenides (NiCoSe) to develop an advanced anode electrode material for supercapacitors. Multicomponent iron-nickel-cobalt-selenides (FeNiCoSe) nanostructures are synthesized using a single-step selenization process with varying iron content substituting nickel. The optimized FeNiCoSe, with 75% Fe substitution in NiCoSe electrode, demonstrates a high specific capacitance of 1442.2 F g<sup>−1</sup> at current density of 1 A g<sup>−1</sup> along with a long-term durability and 82.1% capacitance retention rate after 10,000 cycles. The electrode exhibits stable performance across a broad voltage range of 0.0–0.8 V. Brunauer–Emmett–Teller analysis reveals a specific surface area of 79.27 m<sup>2</sup> g<sup>−1</sup> and a pore diameter of 3.155 nm of the materials, indicating substantial surface area and porosity conducive to enhanced electrochemical activity. The incorporation of Fe into NiCoSe enhances the charge transfer and increases the availability of electroactive sites, leading to improved electronic conductivity and faster charge–discharge kinetics. The synergetic effect of multimetallic components is a key factor in achieving improved performance of the FeNiCoSe electrode material compared to bimetallic electrode materials NiCoSe and FeCoSe. The findings highlight the potential of FeNiCoSe electrode material as high-performance supercapacitors.</p>\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"11 5\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400635\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400635","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了将铁(Fe)掺入硒化镍钴(NiCoSe)中对开发一种先进的超级电容器负极材料的影响。采用单步硒化工艺合成了多组分铁-镍-钴-硒化物(FeNiCoSe)纳米结构。优化后的FeNiCoSe在NiCoSe电极中替换了75%的Fe,在电流密度为1 a g−1时具有1442.2 F g−1的高比电容,并且具有长期耐用性和10,000次循环后82.1%的电容保持率。该电极在0.0-0.8 V的宽电压范围内表现出稳定的性能。brunauer - emmet - teller分析表明,材料的比表面积为79.27 m2 g−1,孔径为3.155 nm,表明材料具有较大的比表面积和孔隙度,有利于增强电化学活性。在NiCoSe中掺入Fe增强了电荷转移,增加了电活性位点的可用性,从而改善了电子导电性和更快的充放电动力学。与双金属电极材料NiCoSe和FeCoSe相比,多金属组分的协同效应是FeNiCoSe电极材料性能提高的关键因素。这一发现突出了FeNiCoSe电极材料作为高性能超级电容器的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Single-Step Synthesis of FeNiCoSe Nanoarchitecture Electrode for Supercapacitor Performance

Single-Step Synthesis of FeNiCoSe Nanoarchitecture Electrode for Supercapacitor Performance

The present study investigates the impact of incorporating iron (Fe) into nickel cobalt selenides (NiCoSe) to develop an advanced anode electrode material for supercapacitors. Multicomponent iron-nickel-cobalt-selenides (FeNiCoSe) nanostructures are synthesized using a single-step selenization process with varying iron content substituting nickel. The optimized FeNiCoSe, with 75% Fe substitution in NiCoSe electrode, demonstrates a high specific capacitance of 1442.2 F g−1 at current density of 1 A g−1 along with a long-term durability and 82.1% capacitance retention rate after 10,000 cycles. The electrode exhibits stable performance across a broad voltage range of 0.0–0.8 V. Brunauer–Emmett–Teller analysis reveals a specific surface area of 79.27 m2 g−1 and a pore diameter of 3.155 nm of the materials, indicating substantial surface area and porosity conducive to enhanced electrochemical activity. The incorporation of Fe into NiCoSe enhances the charge transfer and increases the availability of electroactive sites, leading to improved electronic conductivity and faster charge–discharge kinetics. The synergetic effect of multimetallic components is a key factor in achieving improved performance of the FeNiCoSe electrode material compared to bimetallic electrode materials NiCoSe and FeCoSe. The findings highlight the potential of FeNiCoSe electrode material as high-performance supercapacitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信