基于空间核选择和Halo注意网络的广义深度伪造检测

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Siyou Guo , Qilei Li , Mingliang Gao , Xianxun Zhu , Imad Rida
{"title":"基于空间核选择和Halo注意网络的广义深度伪造检测","authors":"Siyou Guo ,&nbsp;Qilei Li ,&nbsp;Mingliang Gao ,&nbsp;Xianxun Zhu ,&nbsp;Imad Rida","doi":"10.1016/j.imavis.2025.105582","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of AI-Generated Content (AIGC) has enabled the unprecedented synthesis of photorealistic facial images. While these technologies offer transformative potential for creative industries, they also introduce significant risks due to the malicious manipulation of visual media. Current deepfake detection methods struggle with unseen forgeries due to their inability to consider the effects of spatial receptive fields and local representation learning. To bridge these gaps, this paper proposes a Spatial Kernel Selection and Halo Attention Network (SKSHA-Net) for deepfake detection. The proposed model incorporates two key modules, namely Spatial Kernel Selection (SKS) and Halo Attention (HA). The SKS module dynamically adjusts the spatial receptive field to capture subtle artifacts indicative of forgery. The HA module focuses on the intricate relationships between neighboring pixels for local representation learning. Comparative experiments on three public datasets demonstrate that SKSHA-Net outperforms the state-of-the-art (SOTA) methods in both intra-testing and cross-testing.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"160 ","pages":"Article 105582"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalizable deepfake detection via Spatial Kernel Selection and Halo Attention Network\",\"authors\":\"Siyou Guo ,&nbsp;Qilei Li ,&nbsp;Mingliang Gao ,&nbsp;Xianxun Zhu ,&nbsp;Imad Rida\",\"doi\":\"10.1016/j.imavis.2025.105582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid advancement of AI-Generated Content (AIGC) has enabled the unprecedented synthesis of photorealistic facial images. While these technologies offer transformative potential for creative industries, they also introduce significant risks due to the malicious manipulation of visual media. Current deepfake detection methods struggle with unseen forgeries due to their inability to consider the effects of spatial receptive fields and local representation learning. To bridge these gaps, this paper proposes a Spatial Kernel Selection and Halo Attention Network (SKSHA-Net) for deepfake detection. The proposed model incorporates two key modules, namely Spatial Kernel Selection (SKS) and Halo Attention (HA). The SKS module dynamically adjusts the spatial receptive field to capture subtle artifacts indicative of forgery. The HA module focuses on the intricate relationships between neighboring pixels for local representation learning. Comparative experiments on three public datasets demonstrate that SKSHA-Net outperforms the state-of-the-art (SOTA) methods in both intra-testing and cross-testing.</div></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"160 \",\"pages\":\"Article 105582\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885625001702\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625001702","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

人工智能生成内容(AI-Generated Content, AIGC)的快速发展使得前所未有的逼真面部图像合成成为可能。虽然这些技术为创意产业提供了变革性的潜力,但由于对视觉媒体的恶意操纵,它们也带来了重大风险。由于无法考虑空间接受域和局部表征学习的影响,目前的深度伪造检测方法难以识别看不见的伪造物。为了弥补这些不足,本文提出了一种用于深度伪造检测的空间核选择和光环注意网络(SKSHA-Net)。该模型包含两个关键模块,即空间核选择(SKS)和光环注意(HA)。SKS模块动态调整空间接受场,以捕获表明伪造的细微工件。HA模块专注于局部表示学习中相邻像素之间的复杂关系。在三个公共数据集上的对比实验表明,SKSHA-Net在内部测试和交叉测试方面都优于最先进的(SOTA)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalizable deepfake detection via Spatial Kernel Selection and Halo Attention Network
The rapid advancement of AI-Generated Content (AIGC) has enabled the unprecedented synthesis of photorealistic facial images. While these technologies offer transformative potential for creative industries, they also introduce significant risks due to the malicious manipulation of visual media. Current deepfake detection methods struggle with unseen forgeries due to their inability to consider the effects of spatial receptive fields and local representation learning. To bridge these gaps, this paper proposes a Spatial Kernel Selection and Halo Attention Network (SKSHA-Net) for deepfake detection. The proposed model incorporates two key modules, namely Spatial Kernel Selection (SKS) and Halo Attention (HA). The SKS module dynamically adjusts the spatial receptive field to capture subtle artifacts indicative of forgery. The HA module focuses on the intricate relationships between neighboring pixels for local representation learning. Comparative experiments on three public datasets demonstrate that SKSHA-Net outperforms the state-of-the-art (SOTA) methods in both intra-testing and cross-testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信