基于深度学习的多维混沌信号生成及其在图像加密中的应用

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Shuang Zhou , Zhiji Tao , Uğur Erkan , Abdurrahim Toktas , Herbert Ho-Ching Iu , Yingqian Zhang , Hao Zhang
{"title":"基于深度学习的多维混沌信号生成及其在图像加密中的应用","authors":"Shuang Zhou ,&nbsp;Zhiji Tao ,&nbsp;Uğur Erkan ,&nbsp;Abdurrahim Toktas ,&nbsp;Herbert Ho-Ching Iu ,&nbsp;Yingqian Zhang ,&nbsp;Hao Zhang","doi":"10.1016/j.engappai.2025.111017","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a novel artificial intelligence implemented approach to generate multi-dimensional chaotic signals using the Long- and Short-Term Time-Series Network (LSTNet) for a newly contrived Two-Stage pixel/bit level Scrambling and Dynamic Diffusion (TSSDD) color image encryption. Initially, we employ the hyperchaotic Lorenz and Chen chaotic systems to produce chaotic signals. Subsequently, the LSTNet model is trained to predict these produced multi-dimensional chaotic sequences and then it generates new multi-dimensional chaotic signals. Through analysis involving phase diagrams, largest Lyapunov exponent (LE), 0–1 test, Permutation Entropy (PE), Sample Entropy (SE), Correlation Dimension (CD) and National Institute of Standards and Technology (NIST), we observe that these applied artificial intelligence signals exhibit high chaotic states and randomness. Finally, we apply these signals to demonstrate the proposed TSSDD color image encryption wherein simulation experiments indicate competitive performance against common attacks.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"156 ","pages":"Article 111017"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidimensional chaotic signals generation using deep learning and its application in image encryption\",\"authors\":\"Shuang Zhou ,&nbsp;Zhiji Tao ,&nbsp;Uğur Erkan ,&nbsp;Abdurrahim Toktas ,&nbsp;Herbert Ho-Ching Iu ,&nbsp;Yingqian Zhang ,&nbsp;Hao Zhang\",\"doi\":\"10.1016/j.engappai.2025.111017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a novel artificial intelligence implemented approach to generate multi-dimensional chaotic signals using the Long- and Short-Term Time-Series Network (LSTNet) for a newly contrived Two-Stage pixel/bit level Scrambling and Dynamic Diffusion (TSSDD) color image encryption. Initially, we employ the hyperchaotic Lorenz and Chen chaotic systems to produce chaotic signals. Subsequently, the LSTNet model is trained to predict these produced multi-dimensional chaotic sequences and then it generates new multi-dimensional chaotic signals. Through analysis involving phase diagrams, largest Lyapunov exponent (LE), 0–1 test, Permutation Entropy (PE), Sample Entropy (SE), Correlation Dimension (CD) and National Institute of Standards and Technology (NIST), we observe that these applied artificial intelligence signals exhibit high chaotic states and randomness. Finally, we apply these signals to demonstrate the proposed TSSDD color image encryption wherein simulation experiments indicate competitive performance against common attacks.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"156 \",\"pages\":\"Article 111017\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625010176\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625010176","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的人工智能实现方法,利用长短期时间序列网络(LSTNet)生成多维混沌信号,用于新设计的两阶段像素/比特级置乱和动态扩散(TSSDD)彩色图像加密。首先,我们使用超混沌洛伦兹和陈混沌系统来产生混沌信号。然后,训练LSTNet模型来预测这些产生的多维混沌序列,然后生成新的多维混沌信号。通过相图、最大李雅普诺夫指数(LE)、0-1检验、排列熵(PE)、样本熵(SE)、相关维数(CD)和美国国家标准与技术研究院(NIST)的分析,我们发现这些应用的人工智能信号表现出高度的混沌状态和随机性。最后,我们应用这些信号来演示所提出的TSSDD彩色图像加密,其中仿真实验表明对常见攻击的竞争性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multidimensional chaotic signals generation using deep learning and its application in image encryption
In this paper, we propose a novel artificial intelligence implemented approach to generate multi-dimensional chaotic signals using the Long- and Short-Term Time-Series Network (LSTNet) for a newly contrived Two-Stage pixel/bit level Scrambling and Dynamic Diffusion (TSSDD) color image encryption. Initially, we employ the hyperchaotic Lorenz and Chen chaotic systems to produce chaotic signals. Subsequently, the LSTNet model is trained to predict these produced multi-dimensional chaotic sequences and then it generates new multi-dimensional chaotic signals. Through analysis involving phase diagrams, largest Lyapunov exponent (LE), 0–1 test, Permutation Entropy (PE), Sample Entropy (SE), Correlation Dimension (CD) and National Institute of Standards and Technology (NIST), we observe that these applied artificial intelligence signals exhibit high chaotic states and randomness. Finally, we apply these signals to demonstrate the proposed TSSDD color image encryption wherein simulation experiments indicate competitive performance against common attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信