PhenoLinker:使用异质图神经网络预测和解释表型-基因联系

IF 6.2 2区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jose L. Mellina Andreu , Luis Bernal , Antonio F. Skarmeta , Mina Ryten , Sara Álvarez , Alejandro Cisterna García , Juan A. Botía
{"title":"PhenoLinker:使用异质图神经网络预测和解释表型-基因联系","authors":"Jose L. Mellina Andreu ,&nbsp;Luis Bernal ,&nbsp;Antonio F. Skarmeta ,&nbsp;Mina Ryten ,&nbsp;Sara Álvarez ,&nbsp;Alejandro Cisterna García ,&nbsp;Juan A. Botía","doi":"10.1016/j.artmed.2025.103177","DOIUrl":null,"url":null,"abstract":"<div><div>The association of a given human phenotype with a genetic variant remains a critical challenge in biomedical research. We present PhenoLinker, a novel graph-based system capable of associating a score to a phenotype-gene relationship by using heterogeneous information networks and a convolutional neural network-based model for graphs, which can provide an explanation for the predictions. Unlike previous approaches, PhenoLinker integrates gene and phenotype attributes, while maintaining explainability through Integrated Gradients. PhenoLinker consistently outperforms existing models in both retrospective and temporal validation tasks. This system can aid in the discovery of new associations and in understanding the consequences of human genetic variation.</div></div>","PeriodicalId":55458,"journal":{"name":"Artificial Intelligence in Medicine","volume":"167 ","pages":"Article 103177"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PhenoLinker: Phenotype-gene link prediction and explanation using heterogeneous graph neural networks\",\"authors\":\"Jose L. Mellina Andreu ,&nbsp;Luis Bernal ,&nbsp;Antonio F. Skarmeta ,&nbsp;Mina Ryten ,&nbsp;Sara Álvarez ,&nbsp;Alejandro Cisterna García ,&nbsp;Juan A. Botía\",\"doi\":\"10.1016/j.artmed.2025.103177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The association of a given human phenotype with a genetic variant remains a critical challenge in biomedical research. We present PhenoLinker, a novel graph-based system capable of associating a score to a phenotype-gene relationship by using heterogeneous information networks and a convolutional neural network-based model for graphs, which can provide an explanation for the predictions. Unlike previous approaches, PhenoLinker integrates gene and phenotype attributes, while maintaining explainability through Integrated Gradients. PhenoLinker consistently outperforms existing models in both retrospective and temporal validation tasks. This system can aid in the discovery of new associations and in understanding the consequences of human genetic variation.</div></div>\",\"PeriodicalId\":55458,\"journal\":{\"name\":\"Artificial Intelligence in Medicine\",\"volume\":\"167 \",\"pages\":\"Article 103177\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0933365725001125\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0933365725001125","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

特定人类表型与遗传变异的关联仍然是生物医学研究中的一个关键挑战。我们提出了PhenoLinker,这是一个新的基于图形的系统,能够通过使用异构信息网络和基于卷积神经网络的图形模型将分数与表型-基因关系联系起来,这可以为预测提供解释。与以前的方法不同,PhenoLinker集成了基因和表型属性,同时通过集成梯度保持可解释性。PhenoLinker在回顾和时间验证任务中始终优于现有模型。这个系统可以帮助发现新的关联和理解人类遗传变异的后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PhenoLinker: Phenotype-gene link prediction and explanation using heterogeneous graph neural networks
The association of a given human phenotype with a genetic variant remains a critical challenge in biomedical research. We present PhenoLinker, a novel graph-based system capable of associating a score to a phenotype-gene relationship by using heterogeneous information networks and a convolutional neural network-based model for graphs, which can provide an explanation for the predictions. Unlike previous approaches, PhenoLinker integrates gene and phenotype attributes, while maintaining explainability through Integrated Gradients. PhenoLinker consistently outperforms existing models in both retrospective and temporal validation tasks. This system can aid in the discovery of new associations and in understanding the consequences of human genetic variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence in Medicine
Artificial Intelligence in Medicine 工程技术-工程:生物医学
CiteScore
15.00
自引率
2.70%
发文量
143
审稿时长
6.3 months
期刊介绍: Artificial Intelligence in Medicine publishes original articles from a wide variety of interdisciplinary perspectives concerning the theory and practice of artificial intelligence (AI) in medicine, medically-oriented human biology, and health care. Artificial intelligence in medicine may be characterized as the scientific discipline pertaining to research studies, projects, and applications that aim at supporting decision-based medical tasks through knowledge- and/or data-intensive computer-based solutions that ultimately support and improve the performance of a human care provider.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信