ESC-UNET:一种混合CNN和Swin变压器的皮肤损伤分割方法

Anwar Jimi , Nabila Zrira , Oumaima Guendoul , Ibtissam Benmiloud , Haris Ahmad Khan , Shah Nawaz
{"title":"ESC-UNET:一种混合CNN和Swin变压器的皮肤损伤分割方法","authors":"Anwar Jimi ,&nbsp;Nabila Zrira ,&nbsp;Oumaima Guendoul ,&nbsp;Ibtissam Benmiloud ,&nbsp;Haris Ahmad Khan ,&nbsp;Shah Nawaz","doi":"10.1016/j.ibmed.2025.100257","DOIUrl":null,"url":null,"abstract":"<div><div>One of the most important tasks in computer-aided diagnostics is the automatic segmentation of skin lesions, which plays an essential role in the early diagnosis and treatment of skin cancer. In recent years, the Convolutional Neural Network (CNN) has largely replaced other traditional methods for segmenting skin lesions. However, due to insufficient information and unclear lesion region segmentation, skin lesion image segmentation still has challenges. In this paper, we propose a novel deep medical image segmentation approach named “ESC-UNET” which combines the advantages of CNN and Transformer to effectively leverage local information and long-range dependencies to enhance medical image segmentation. In terms of the local information, we use a CNN-based encoder and decoder framework. The CNN branch mines local information from medical images using the locality of convolution processes and the pre-trained EfficientNetB5 network. As for the long-range dependencies, we build a Transformer branch that emphasizes the global context. In addition, we employ Atrous Spatial Pyramid Pooling (ASPP) to gather network-wide relevant information. The Convolution Block Attention Module (CBAM) is added to the model to promote effective features and suppress ineffective features in segmentation. We have evaluated our network using the ISIC 2016, ISIC 2017, and ISIC 2018 datasets. The results demonstrate the efficiency of the proposed model in segmenting skin lesions.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"12 ","pages":"Article 100257"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESC-UNET: A hybrid CNN and Swin Transformers for skin lesion segmentation\",\"authors\":\"Anwar Jimi ,&nbsp;Nabila Zrira ,&nbsp;Oumaima Guendoul ,&nbsp;Ibtissam Benmiloud ,&nbsp;Haris Ahmad Khan ,&nbsp;Shah Nawaz\",\"doi\":\"10.1016/j.ibmed.2025.100257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One of the most important tasks in computer-aided diagnostics is the automatic segmentation of skin lesions, which plays an essential role in the early diagnosis and treatment of skin cancer. In recent years, the Convolutional Neural Network (CNN) has largely replaced other traditional methods for segmenting skin lesions. However, due to insufficient information and unclear lesion region segmentation, skin lesion image segmentation still has challenges. In this paper, we propose a novel deep medical image segmentation approach named “ESC-UNET” which combines the advantages of CNN and Transformer to effectively leverage local information and long-range dependencies to enhance medical image segmentation. In terms of the local information, we use a CNN-based encoder and decoder framework. The CNN branch mines local information from medical images using the locality of convolution processes and the pre-trained EfficientNetB5 network. As for the long-range dependencies, we build a Transformer branch that emphasizes the global context. In addition, we employ Atrous Spatial Pyramid Pooling (ASPP) to gather network-wide relevant information. The Convolution Block Attention Module (CBAM) is added to the model to promote effective features and suppress ineffective features in segmentation. We have evaluated our network using the ISIC 2016, ISIC 2017, and ISIC 2018 datasets. The results demonstrate the efficiency of the proposed model in segmenting skin lesions.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"12 \",\"pages\":\"Article 100257\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521225000614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机辅助诊断中最重要的任务之一是皮肤病变的自动分割,这对皮肤癌的早期诊断和治疗起着至关重要的作用。近年来,卷积神经网络(CNN)在很大程度上取代了其他传统的皮肤损伤分割方法。然而,由于信息不足和病灶区域分割不清,皮肤病灶图像分割仍然存在挑战。本文提出了一种新的医学图像深度分割方法“ESC-UNET”,该方法结合了CNN和Transformer的优点,有效地利用了局部信息和远程依赖关系来增强医学图像分割。在局部信息方面,我们使用了基于cnn的编码器和解码器框架。CNN分支使用卷积过程的局部性和预训练的effentnetb5网络从医学图像中挖掘局部信息。至于远程依赖,我们构建一个强调全局上下文的Transformer分支。此外,我们采用亚特劳斯空间金字塔池(ASPP)来收集全网络的相关信息。在该模型中加入了卷积块注意模块(CBAM),在分割中提升有效特征,抑制无效特征。我们使用ISIC 2016、ISIC 2017和ISIC 2018数据集评估了我们的网络。实验结果证明了该模型在皮肤损伤分割方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESC-UNET: A hybrid CNN and Swin Transformers for skin lesion segmentation
One of the most important tasks in computer-aided diagnostics is the automatic segmentation of skin lesions, which plays an essential role in the early diagnosis and treatment of skin cancer. In recent years, the Convolutional Neural Network (CNN) has largely replaced other traditional methods for segmenting skin lesions. However, due to insufficient information and unclear lesion region segmentation, skin lesion image segmentation still has challenges. In this paper, we propose a novel deep medical image segmentation approach named “ESC-UNET” which combines the advantages of CNN and Transformer to effectively leverage local information and long-range dependencies to enhance medical image segmentation. In terms of the local information, we use a CNN-based encoder and decoder framework. The CNN branch mines local information from medical images using the locality of convolution processes and the pre-trained EfficientNetB5 network. As for the long-range dependencies, we build a Transformer branch that emphasizes the global context. In addition, we employ Atrous Spatial Pyramid Pooling (ASPP) to gather network-wide relevant information. The Convolution Block Attention Module (CBAM) is added to the model to promote effective features and suppress ineffective features in segmentation. We have evaluated our network using the ISIC 2016, ISIC 2017, and ISIC 2018 datasets. The results demonstrate the efficiency of the proposed model in segmenting skin lesions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信