人工智能在食管鳞状细胞癌早期筛查中的应用

IF 3.2 3区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Si-yan Yan , Xin-yu Fu , Yan Yang , Liu-yi Jia , Jia-wei Liang , Ying-hui Li , Ling-ling Yan , Ying Zhou , Xian-bin Zhou , Shao-wei Li , Xin-li Mao
{"title":"人工智能在食管鳞状细胞癌早期筛查中的应用","authors":"Si-yan Yan ,&nbsp;Xin-yu Fu ,&nbsp;Yan Yang ,&nbsp;Liu-yi Jia ,&nbsp;Jia-wei Liang ,&nbsp;Ying-hui Li ,&nbsp;Ling-ling Yan ,&nbsp;Ying Zhou ,&nbsp;Xian-bin Zhou ,&nbsp;Shao-wei Li ,&nbsp;Xin-li Mao","doi":"10.1016/j.bpg.2025.102004","DOIUrl":null,"url":null,"abstract":"<div><div>Esophageal squamous cell carcinoma (ESCC) remains a significant global health burden with high incidence and mortality rates, particularly in developing regions. Early detection is crucial for improving patient survival, yet conventional screening methods such as endoscopy and non-endoscopic techniques face limitations in accuracy, cost, and dependency on clinician expertise. This review explores the transformative role of artificial intelligence (AI) in ESCC screening. AI technologies, including machine learning, deep learning, and transfer learning, demonstrate remarkable potential for early ESCC screening by targeting high-risk populations, optimizing screening modalities, refining screening intervals, and enhancing cost-effectiveness. AI-driven systems improve lesion detection, vascular pattern recognition, and risk prediction by integrating imaging, genomic, and clinical data. Additionally, AI applications in liquid biopsy analysis enable non-invasive detection of circulating tumor cells and DNA, further advancing early diagnosis. Despite these advancements, challenges such as dataset variability, model generalizability, algorithm transparency, and ethical and legal concerns require resolution to fully harness AI's capabilities. This paper highlights the current applications, persistent challenges, and future directions for AI in revolutionizing ESCC screening.</div></div>","PeriodicalId":56031,"journal":{"name":"Best Practice & Research Clinical Gastroenterology","volume":"75 ","pages":"Article 102004"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence in early screening for esophageal squamous cell carcinoma\",\"authors\":\"Si-yan Yan ,&nbsp;Xin-yu Fu ,&nbsp;Yan Yang ,&nbsp;Liu-yi Jia ,&nbsp;Jia-wei Liang ,&nbsp;Ying-hui Li ,&nbsp;Ling-ling Yan ,&nbsp;Ying Zhou ,&nbsp;Xian-bin Zhou ,&nbsp;Shao-wei Li ,&nbsp;Xin-li Mao\",\"doi\":\"10.1016/j.bpg.2025.102004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Esophageal squamous cell carcinoma (ESCC) remains a significant global health burden with high incidence and mortality rates, particularly in developing regions. Early detection is crucial for improving patient survival, yet conventional screening methods such as endoscopy and non-endoscopic techniques face limitations in accuracy, cost, and dependency on clinician expertise. This review explores the transformative role of artificial intelligence (AI) in ESCC screening. AI technologies, including machine learning, deep learning, and transfer learning, demonstrate remarkable potential for early ESCC screening by targeting high-risk populations, optimizing screening modalities, refining screening intervals, and enhancing cost-effectiveness. AI-driven systems improve lesion detection, vascular pattern recognition, and risk prediction by integrating imaging, genomic, and clinical data. Additionally, AI applications in liquid biopsy analysis enable non-invasive detection of circulating tumor cells and DNA, further advancing early diagnosis. Despite these advancements, challenges such as dataset variability, model generalizability, algorithm transparency, and ethical and legal concerns require resolution to fully harness AI's capabilities. This paper highlights the current applications, persistent challenges, and future directions for AI in revolutionizing ESCC screening.</div></div>\",\"PeriodicalId\":56031,\"journal\":{\"name\":\"Best Practice & Research Clinical Gastroenterology\",\"volume\":\"75 \",\"pages\":\"Article 102004\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Best Practice & Research Clinical Gastroenterology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1521691825000319\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Best Practice & Research Clinical Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1521691825000319","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

食管鳞状细胞癌(ESCC)仍然是全球重大的健康负担,发病率和死亡率高,特别是在发展中地区。早期发现对于提高患者生存率至关重要,然而传统的筛查方法,如内窥镜和非内窥镜技术,在准确性、成本和对临床医生专业知识的依赖方面存在局限性。本文综述了人工智能(AI)在ESCC筛查中的变革作用。人工智能技术,包括机器学习、深度学习和迁移学习,通过针对高危人群、优化筛查方式、优化筛查间隔和提高成本效益,在早期ESCC筛查中显示出巨大的潜力。人工智能驱动的系统通过整合成像、基因组和临床数据,改善了病变检测、血管模式识别和风险预测。此外,人工智能在液体活检分析中的应用可以实现循环肿瘤细胞和DNA的无创检测,进一步推进早期诊断。尽管取得了这些进步,但数据集可变性、模型泛化性、算法透明度以及道德和法律问题等挑战需要解决,以充分利用人工智能的能力。本文重点介绍了人工智能在革命性的ESCC筛选中的当前应用、持续挑战和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence in early screening for esophageal squamous cell carcinoma
Esophageal squamous cell carcinoma (ESCC) remains a significant global health burden with high incidence and mortality rates, particularly in developing regions. Early detection is crucial for improving patient survival, yet conventional screening methods such as endoscopy and non-endoscopic techniques face limitations in accuracy, cost, and dependency on clinician expertise. This review explores the transformative role of artificial intelligence (AI) in ESCC screening. AI technologies, including machine learning, deep learning, and transfer learning, demonstrate remarkable potential for early ESCC screening by targeting high-risk populations, optimizing screening modalities, refining screening intervals, and enhancing cost-effectiveness. AI-driven systems improve lesion detection, vascular pattern recognition, and risk prediction by integrating imaging, genomic, and clinical data. Additionally, AI applications in liquid biopsy analysis enable non-invasive detection of circulating tumor cells and DNA, further advancing early diagnosis. Despite these advancements, challenges such as dataset variability, model generalizability, algorithm transparency, and ethical and legal concerns require resolution to fully harness AI's capabilities. This paper highlights the current applications, persistent challenges, and future directions for AI in revolutionizing ESCC screening.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
69 days
期刊介绍: Each topic-based issue of Best Practice & Research Clinical Gastroenterology will provide a comprehensive review of current clinical practice and thinking within the specialty of gastroenterology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信