YOLO-SAATD:高效的SAR机场和飞机目标探测器

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Daobin Ma , Zhanhong Lu , Zixuan Dai , Yangyue Wei , Li Yang , Haimiao Hu , Wenqiao Zhang , Dongping Zhang
{"title":"YOLO-SAATD:高效的SAR机场和飞机目标探测器","authors":"Daobin Ma ,&nbsp;Zhanhong Lu ,&nbsp;Zixuan Dai ,&nbsp;Yangyue Wei ,&nbsp;Li Yang ,&nbsp;Haimiao Hu ,&nbsp;Wenqiao Zhang ,&nbsp;Dongping Zhang","doi":"10.1016/j.visinf.2025.100240","DOIUrl":null,"url":null,"abstract":"<div><div>While object detection performs well in natural images, it faces challenges in Synthetic Aperture Radar (SAR) images for detecting airports and aircraft due to discrete scattering points, complex backgrounds, and multi-scale targets. Existing methods struggle with computational inefficiency, omission of small targets, and low accuracy. We propose a SAR airport and aircraft target detection model based on YOLO, named YOLO-SAATD (You Only Look Once-SAR Airport and Aircraft Target Detector), which tackles the aforementioned challenges from three perspectives: <strong>1. Efficiency</strong>: A lightweight hierarchical multi-scale backbone reduces parameters and enhances detection speed. <strong>2. Fine granularity</strong>: A ”ScaleNimble Neck” integrates feature reshaping and scale-aware aggregation to enhance detail detection and feature capture in multi-scale SAR images. <strong>3. Precision</strong>: Wise-IoU loss function is used to optimize bounding box localization and enhance detection accuracy. Experiments on the SAR-Airport-1.0 and SAR-AirCraft-1.0 datasets show that YOLO-SAATD improves precision and mAP50 by 1%-2%, increases detection frame rate by 15%, and reduces model parameters by 25% compared to YOLOv8n, thus validating its effectiveness for SAR airport and aircraft target detection.</div></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"9 2","pages":"Article 100240"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YOLO-SAATD: An efficient SAR airport and aircraft target detector\",\"authors\":\"Daobin Ma ,&nbsp;Zhanhong Lu ,&nbsp;Zixuan Dai ,&nbsp;Yangyue Wei ,&nbsp;Li Yang ,&nbsp;Haimiao Hu ,&nbsp;Wenqiao Zhang ,&nbsp;Dongping Zhang\",\"doi\":\"10.1016/j.visinf.2025.100240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While object detection performs well in natural images, it faces challenges in Synthetic Aperture Radar (SAR) images for detecting airports and aircraft due to discrete scattering points, complex backgrounds, and multi-scale targets. Existing methods struggle with computational inefficiency, omission of small targets, and low accuracy. We propose a SAR airport and aircraft target detection model based on YOLO, named YOLO-SAATD (You Only Look Once-SAR Airport and Aircraft Target Detector), which tackles the aforementioned challenges from three perspectives: <strong>1. Efficiency</strong>: A lightweight hierarchical multi-scale backbone reduces parameters and enhances detection speed. <strong>2. Fine granularity</strong>: A ”ScaleNimble Neck” integrates feature reshaping and scale-aware aggregation to enhance detail detection and feature capture in multi-scale SAR images. <strong>3. Precision</strong>: Wise-IoU loss function is used to optimize bounding box localization and enhance detection accuracy. Experiments on the SAR-Airport-1.0 and SAR-AirCraft-1.0 datasets show that YOLO-SAATD improves precision and mAP50 by 1%-2%, increases detection frame rate by 15%, and reduces model parameters by 25% compared to YOLOv8n, thus validating its effectiveness for SAR airport and aircraft target detection.</div></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"9 2\",\"pages\":\"Article 100240\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X25000233\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X25000233","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

虽然在自然图像中目标检测具有良好的性能,但在合成孔径雷达(SAR)图像中,由于散射点离散、背景复杂、目标多尺度等特点,机场和飞机的目标检测面临挑战。现有方法存在计算效率低、遗漏小目标和精度低等问题。我们提出了一种基于YOLO的SAR机场和飞机目标检测模型,命名为YOLO- saatd (You Only Look Once-SAR机场和飞机目标检测器),该模型从三个方面解决了上述挑战:效率:轻量级的分层多尺度骨干网减少了参数,提高了检测速度。2. 细粒度:“ScaleNimble Neck”集成了特征重塑和尺度感知聚合,增强了多尺度SAR图像的细节检测和特征捕获。3. 精度:采用Wise-IoU损失函数优化边界盒定位,提高检测精度。在SAR- airport -1.0和SAR- aircraft -1.0数据集上的实验表明,与YOLOv8n相比,YOLO-SAATD的精度和mAP50提高了1% ~ 2%,检测帧率提高了15%,模型参数降低了25%,验证了其在SAR机场和飞机目标检测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
YOLO-SAATD: An efficient SAR airport and aircraft target detector
While object detection performs well in natural images, it faces challenges in Synthetic Aperture Radar (SAR) images for detecting airports and aircraft due to discrete scattering points, complex backgrounds, and multi-scale targets. Existing methods struggle with computational inefficiency, omission of small targets, and low accuracy. We propose a SAR airport and aircraft target detection model based on YOLO, named YOLO-SAATD (You Only Look Once-SAR Airport and Aircraft Target Detector), which tackles the aforementioned challenges from three perspectives: 1. Efficiency: A lightweight hierarchical multi-scale backbone reduces parameters and enhances detection speed. 2. Fine granularity: A ”ScaleNimble Neck” integrates feature reshaping and scale-aware aggregation to enhance detail detection and feature capture in multi-scale SAR images. 3. Precision: Wise-IoU loss function is used to optimize bounding box localization and enhance detection accuracy. Experiments on the SAR-Airport-1.0 and SAR-AirCraft-1.0 datasets show that YOLO-SAATD improves precision and mAP50 by 1%-2%, increases detection frame rate by 15%, and reduces model parameters by 25% compared to YOLOv8n, thus validating its effectiveness for SAR airport and aircraft target detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信